Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
import torch | |
from transformers import AutoTokenizer, GenerationConfig | |
from trl import AutoModelForCausalLMWithValueHead | |
from trl.core import LengthSampler | |
from trl.extras import BestOfNSampler | |
def queries_to_scores(list_of_strings): | |
return [torch.rand(1).item() for _ in list_of_strings] | |
class BestOfNSamplerTester(unittest.TestCase): | |
""" | |
Tests the BestOfNSampler class | |
""" | |
ref_model_name = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" | |
output_length_sampler = LengthSampler(2, 6) | |
model = AutoModelForCausalLMWithValueHead.from_pretrained(ref_model_name) | |
tokenizer = AutoTokenizer.from_pretrained(ref_model_name) | |
tokenizer.pad_token = tokenizer.eos_token | |
output_length_sampler = LengthSampler(2, 6) | |
def test_different_input_types(self): | |
r""" | |
Tests if the different input types normalizer works | |
""" | |
generation_config = GenerationConfig( | |
min_length=-1, | |
top_k=0.0, | |
top_p=1.0, | |
do_sample=True, | |
pad_token_id=self.tokenizer.eos_token_id, | |
) | |
output_length_sampler = LengthSampler(2, 6) | |
best_of_n = BestOfNSampler( | |
self.model, | |
self.tokenizer, | |
queries_to_scores, | |
length_sampler=output_length_sampler, | |
generation_config=generation_config, | |
) | |
queries = ["hello world", "goodbye world"] | |
tokenized_queries = [self.tokenizer.encode(query) for query in queries] | |
various_queries_formats = [ | |
(tokenized_queries[0], 1), | |
(tokenized_queries, 2), | |
(torch.tensor(tokenized_queries[1]), 1), | |
([torch.tensor(query) for query in tokenized_queries], 2), | |
] | |
for q, expected_length in various_queries_formats: | |
results = best_of_n.generate(q) | |
self.assertIsInstance(results, list) | |
self.assertEqual(len(results), expected_length) | |
def test_different_sample_sizes_and_n_candidates_values(self): | |
r""" | |
Tests different sample sizes and n_candidates values | |
""" | |
generation_config = GenerationConfig( | |
min_length=-1, | |
top_k=0.0, | |
top_p=1.0, | |
do_sample=True, | |
pad_token_id=self.tokenizer.eos_token_id, | |
) | |
output_length_sampler = LengthSampler(6, 10) | |
for sample_value, n_candidates_values, expected in [ | |
(4, 2, 2), | |
(10, 3, 3), | |
(6, 4, 4), | |
]: | |
best_of_n = BestOfNSampler( | |
self.model, | |
self.tokenizer, | |
queries_to_scores, | |
length_sampler=output_length_sampler, | |
generation_config=generation_config, | |
sample_size=sample_value, | |
n_candidates=n_candidates_values, | |
) | |
queries = ["hello world", "troll the world"] | |
tokenized_queries = [self.tokenizer.encode(query) for query in queries] | |
results = best_of_n.generate(tokenized_queries) | |
for result in results: | |
self.assertEqual(len(result), expected) | |