Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import tempfile | |
import unittest | |
from functools import partial | |
import torch | |
from accelerate import Accelerator | |
from datasets import load_dataset | |
from parameterized import parameterized | |
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer | |
from transformers.testing_utils import require_peft | |
from transformers.utils import is_peft_available | |
from trl import BCOConfig, BCOTrainer | |
from trl.trainer.bco_trainer import _process_tokens, _tokenize | |
from .testing_utils import require_no_wandb, require_sklearn | |
if is_peft_available(): | |
from peft import LoraConfig | |
class BCOTrainerTester(unittest.TestCase): | |
def test_train(self, config_name): | |
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" | |
model = AutoModelForCausalLM.from_pretrained(model_id) | |
ref_model = AutoModelForCausalLM.from_pretrained(model_id) | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
dataset = load_dataset("trl-internal-testing/zen", config_name, split="train") | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = BCOConfig( | |
output_dir=tmp_dir, | |
remove_unused_columns=False, # warning raised if not set to False | |
learning_rate=0.1, # increase the learning rate to speed up the test | |
report_to="none", | |
) | |
trainer = BCOTrainer( | |
model=model, | |
ref_model=ref_model, | |
args=training_args, | |
processing_class=tokenizer, | |
train_dataset=dataset, | |
) | |
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} | |
trainer.train() | |
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"]) | |
# Check that the parameters have changed | |
for n, param in previous_trainable_params.items(): | |
new_param = trainer.model.get_parameter(n) | |
if param.sum() != 0: # ignore 0 biases | |
self.assertFalse(torch.equal(param.cpu(), new_param.cpu())) | |
def test_train_with_precompute(self): | |
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" | |
model = AutoModelForCausalLM.from_pretrained(model_id) | |
ref_model = AutoModelForCausalLM.from_pretrained(model_id) | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
dataset = load_dataset("trl-internal-testing/zen", "standard_unpaired_preference", split="train") | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = BCOConfig( | |
output_dir=tmp_dir, | |
remove_unused_columns=False, # warning raised if not set to False | |
learning_rate=0.1, # increase the learning rate to speed up the test | |
precompute_ref_log_probs=True, | |
report_to="none", | |
) | |
trainer = BCOTrainer( | |
model=model, | |
ref_model=ref_model, | |
args=training_args, | |
processing_class=tokenizer, | |
train_dataset=dataset, | |
) | |
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} | |
trainer.train() | |
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"]) | |
# Check that the parameters have changed | |
for n, param in previous_trainable_params.items(): | |
new_param = trainer.model.get_parameter(n) | |
if param.sum() != 0: # ignore 0 biases | |
self.assertFalse(torch.equal(param.cpu(), new_param.cpu())) | |
def test_train_eval(self): | |
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" | |
model = AutoModelForCausalLM.from_pretrained(model_id) | |
ref_model = AutoModelForCausalLM.from_pretrained(model_id) | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
dataset = load_dataset("trl-internal-testing/zen", "standard_unpaired_preference") | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = BCOConfig( | |
output_dir=tmp_dir, | |
remove_unused_columns=False, # warning raised if not set to False | |
eval_strategy="steps", | |
eval_steps=3, | |
report_to="none", | |
) | |
trainer = BCOTrainer( | |
model=model, | |
ref_model=ref_model, | |
args=training_args, | |
processing_class=tokenizer, | |
train_dataset=dataset["train"], | |
eval_dataset=dataset["test"], | |
) | |
trainer.train() | |
def test_init_with_ref_model_is_model(self): | |
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" | |
model = AutoModelForCausalLM.from_pretrained(model_id) | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
dataset = load_dataset("trl-internal-testing/zen", "standard_unpaired_preference", split="train") | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = BCOConfig( | |
output_dir=tmp_dir, | |
remove_unused_columns=False, # warning raised if not set to False | |
report_to="none", | |
) | |
with self.assertRaises(ValueError): | |
BCOTrainer( | |
model=model, | |
ref_model=model, # ref_model can't be the same as model | |
args=training_args, | |
processing_class=tokenizer, | |
train_dataset=dataset, | |
) | |
def test_tokenize_and_process_tokens(self): | |
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" | |
model = AutoModelForCausalLM.from_pretrained(model_id) | |
ref_model = AutoModelForCausalLM.from_pretrained(model_id) | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
dataset = load_dataset("trl-internal-testing/zen", "standard_unpaired_preference", split="train") | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = BCOConfig( | |
output_dir=tmp_dir, | |
remove_unused_columns=False, # warning raised if not set to False | |
report_to="none", | |
) | |
trainer = BCOTrainer( | |
model=model, | |
ref_model=ref_model, | |
args=training_args, | |
processing_class=tokenizer, | |
train_dataset=dataset, | |
) | |
tokenized_dataset = dataset.map( | |
_tokenize, | |
fn_kwargs={"tokenizer": trainer.tokenizer}, | |
batched=True, | |
batch_size=2, | |
) | |
self.assertListEqual(tokenized_dataset["prompt"], dataset["prompt"]) | |
self.assertListEqual(tokenized_dataset["completion"], dataset["completion"]) | |
self.assertListEqual(tokenized_dataset["label"], dataset["label"]) | |
self.assertListEqual(tokenized_dataset["prompt_input_ids"][0], [46518, 374, 2664, 1091]) | |
self.assertListEqual(tokenized_dataset["prompt_attention_mask"][0], [1, 1, 1, 1]) | |
self.assertListEqual(tokenized_dataset["answer_input_ids"][0], [27261, 13]) | |
self.assertListEqual(tokenized_dataset["answer_attention_mask"][0], [1, 1]) | |
fn_kwargs = { | |
"prefix": "", | |
"is_encoder_decoder": trainer.is_encoder_decoder, | |
"tokenizer": trainer.tokenizer, | |
"max_length": trainer.max_length, | |
"truncation_mode": trainer.truncation_mode, | |
"label_pad_token_id": trainer.label_pad_token_id, | |
"max_prompt_length": trainer.max_prompt_length, | |
} | |
processed_dataset = tokenized_dataset.map(_process_tokens, fn_kwargs=fn_kwargs) | |
self.assertListEqual(processed_dataset["prompt"], dataset["prompt"]) | |
self.assertListEqual(processed_dataset["completion"], dataset["completion"]) | |
self.assertListEqual(processed_dataset["label"], dataset["label"]) | |
self.assertListEqual(processed_dataset["prompt_input_ids"][0], [46518, 374, 2664, 1091]) | |
self.assertListEqual(processed_dataset["prompt_attention_mask"][0], [1, 1, 1, 1]) | |
self.assertListEqual( | |
processed_dataset["completion_input_ids"][0], [46518, 374, 2664, 1091, 27261, 13, 151645] | |
) | |
self.assertListEqual(processed_dataset["completion_attention_mask"][0], [1, 1, 1, 1, 1, 1, 1]) | |
self.assertListEqual( | |
processed_dataset["completion_labels"][0], [-100, -100, -100, -100, 27261, 13, 151645] | |
) | |
def test_train_without_providing_ref_model(self): | |
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" | |
model = AutoModelForCausalLM.from_pretrained(model_id) | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
dataset = load_dataset("trl-internal-testing/zen", "standard_unpaired_preference", split="train") | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = BCOConfig( | |
output_dir=tmp_dir, | |
remove_unused_columns=False, # warning raised if not set to False | |
learning_rate=0.1, # increase the learning rate to speed up the test | |
report_to="none", | |
) | |
trainer = BCOTrainer( | |
model=model, | |
args=training_args, | |
processing_class=tokenizer, | |
train_dataset=dataset, | |
) | |
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} | |
trainer.train() | |
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"]) | |
# Check that the parameters have changed | |
for n, param in previous_trainable_params.items(): | |
new_param = trainer.model.get_parameter(n) | |
if param.sum() != 0: # ignore 0 biases | |
self.assertFalse(torch.equal(param.cpu(), new_param.cpu())) | |
def test_train_udm(self): | |
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" | |
model = AutoModelForCausalLM.from_pretrained(model_id) | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
# Get embedding model | |
embedding_model_id = "trl-internal-testing/tiny-BartModel" | |
embedding_model = AutoModel.from_pretrained(embedding_model_id) | |
embedding_tokenizer = AutoTokenizer.from_pretrained(embedding_model_id) | |
def embed_prompt(input_ids, attention_mask, model): | |
outputs = model(input_ids=input_ids, attention_mask=attention_mask) | |
return outputs.last_hidden_state.mean(dim=1) | |
embedding_model = Accelerator().prepare_model(embedding_model) | |
embedding_func = partial(embed_prompt, model=embedding_model) | |
dataset = load_dataset("trl-internal-testing/zen", "standard_unpaired_preference", split="train") | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = BCOConfig( | |
output_dir=tmp_dir, | |
remove_unused_columns=False, # warning raised if not set to False | |
learning_rate=0.1, # increase the learning rate to speed up the test | |
report_to="none", | |
) | |
trainer = BCOTrainer( | |
model=model, | |
args=training_args, | |
processing_class=tokenizer, | |
train_dataset=dataset, | |
embedding_func=embedding_func, | |
embedding_tokenizer=embedding_tokenizer, | |
) | |
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} | |
trainer.train() | |
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"]) | |
# Check that the parameters have changed | |
for n, param in previous_trainable_params.items(): | |
new_param = trainer.model.get_parameter(n) | |
if param.sum() != 0: # ignore 0 biases | |
self.assertFalse(torch.equal(param.cpu(), new_param.cpu())) | |
def test_train_without_providing_ref_model_with_lora(self): | |
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" | |
model = AutoModelForCausalLM.from_pretrained(model_id) | |
lora_config = LoraConfig(r=16, lora_alpha=32, lora_dropout=0.05, task_type="CAUSAL_LM") | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
dataset = load_dataset("trl-internal-testing/zen", "standard_unpaired_preference", split="train") | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = BCOConfig( | |
output_dir=tmp_dir, | |
remove_unused_columns=False, # warning raised if not set to False | |
learning_rate=0.1, # increase the learning rate to speed up the test | |
report_to="none", | |
) | |
trainer = BCOTrainer( | |
model=model, | |
args=training_args, | |
processing_class=tokenizer, | |
train_dataset=dataset, | |
peft_config=lora_config, | |
) | |
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} | |
trainer.train() | |
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"]) | |
# Check that the parameters have changed | |
for n, param in previous_trainable_params.items(): | |
if "lora" in n: | |
new_param = trainer.model.get_parameter(n) | |
if param.sum() != 0: # ignore 0 biases | |
self.assertFalse(torch.equal(param.cpu(), new_param.cpu())) | |
def test_generate_during_eval_no_wandb(self): | |
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" | |
model = AutoModelForCausalLM.from_pretrained(model_id) | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
dataset = load_dataset("trl-internal-testing/zen", "standard_unpaired_preference") | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = BCOConfig( | |
output_dir=tmp_dir, | |
remove_unused_columns=False, # warning raised if not set to False | |
eval_strategy="steps", | |
eval_steps=3, | |
generate_during_eval=True, | |
report_to="none", | |
) | |
with self.assertRaisesRegex( | |
ValueError, | |
expected_regex="`generate_during_eval=True` requires Weights and Biases or Comet to be installed." | |
" Please install `wandb` or `comet-ml` to resolve.", | |
): | |
BCOTrainer( | |
model=model, | |
args=training_args, | |
processing_class=tokenizer, | |
train_dataset=dataset["train"], | |
eval_dataset=dataset["test"], | |
) | |
def test_lora_train_and_save(self): | |
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" | |
model = AutoModelForCausalLM.from_pretrained(model_id) | |
lora_config = LoraConfig(r=16, lora_alpha=32, lora_dropout=0.05, task_type="CAUSAL_LM") | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
dataset = load_dataset("trl-internal-testing/zen", "standard_unpaired_preference") | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = BCOConfig( | |
output_dir=tmp_dir, | |
remove_unused_columns=False, # warning raised if not set to False | |
report_to="none", | |
) | |
trainer = BCOTrainer( | |
model=model, | |
args=training_args, | |
processing_class=tokenizer, | |
train_dataset=dataset["train"], | |
peft_config=lora_config, | |
) | |
# train the model | |
trainer.train() | |
# save peft adapter | |
trainer.save_model() | |
# assert that the model is loaded without giving OSError | |
AutoModelForCausalLM.from_pretrained(tmp_dir) | |
def test_compute_metrics(self): | |
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" | |
model = AutoModelForCausalLM.from_pretrained(model_id) | |
ref_model = AutoModelForCausalLM.from_pretrained(model_id) | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
dataset = load_dataset("trl-internal-testing/zen", "standard_unpaired_preference") | |
def dummy_compute_metrics(*args, **kwargs): | |
return {"test": 0.0} | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = BCOConfig( | |
output_dir=tmp_dir, | |
remove_unused_columns=False, # warning raised if not set to False | |
eval_strategy="steps", | |
eval_steps=3, | |
report_to="none", | |
) | |
trainer = BCOTrainer( | |
model=model, | |
ref_model=ref_model, | |
args=training_args, | |
processing_class=tokenizer, | |
train_dataset=dataset["train"], | |
eval_dataset=dataset["test"], | |
compute_metrics=dummy_compute_metrics, | |
) | |
trainer.train() | |
self.assertEqual(trainer.state.log_history[-2]["eval_test"], 0.0) | |