Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import shutil | |
import torch | |
from accelerate import PartialState | |
from datasets import load_dataset | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoModelForSequenceClassification, | |
AutoTokenizer, | |
HfArgumentParser, | |
) | |
from trl import ( | |
ModelConfig, | |
PPOConfig, | |
PPOTrainer, | |
ScriptArguments, | |
get_kbit_device_map, | |
get_peft_config, | |
get_quantization_config, | |
) | |
from trl.trainer.utils import SIMPLE_CHAT_TEMPLATE | |
""" | |
python examples/scripts/ppo/ppo_tldr.py \ | |
--dataset_name trl-internal-testing/tldr-preference-sft-trl-style \ | |
--dataset_test_split validation \ | |
--learning_rate 3e-6 \ | |
--output_dir models/minimal/ppo_tldr \ | |
--per_device_train_batch_size 1 \ | |
--gradient_accumulation_steps 64 \ | |
--total_episodes 30000 \ | |
--model_name_or_path EleutherAI/pythia-1b-deduped \ | |
--sft_model_path cleanrl/EleutherAI_pythia-1b-deduped__sft__tldr \ | |
--reward_model_path cleanrl/EleutherAI_pythia-1b-deduped__reward__tldr \ | |
--missing_eos_penalty 1.0 \ | |
--stop_token eos \ | |
--response_length 53 \ | |
--eval_strategy steps \ | |
--eval_steps 100 | |
accelerate launch --config_file examples/accelerate_configs/deepspeed_zero2.yaml \ | |
examples/scripts/ppo/ppo_tldr.py \ | |
--dataset_name trl-internal-testing/tldr-preference-sft-trl-style \ | |
--dataset_test_split validation \ | |
--output_dir models/minimal/ppo_tldr \ | |
--learning_rate 3e-6 \ | |
--per_device_train_batch_size 16 \ | |
--gradient_accumulation_steps 4 \ | |
--total_episodes 1000000 \ | |
--model_name_or_path EleutherAI/pythia-1b-deduped \ | |
--sft_model_path cleanrl/EleutherAI_pythia-1b-deduped__sft__tldr \ | |
--reward_model_path cleanrl/EleutherAI_pythia-1b-deduped__reward__tldr \ | |
--local_rollout_forward_batch_size 16 \ | |
--missing_eos_penalty 1.0 \ | |
--stop_token eos \ | |
--eval_strategy steps \ | |
--eval_steps 100 | |
""" | |
if __name__ == "__main__": | |
parser = HfArgumentParser((ScriptArguments, PPOConfig, ModelConfig)) | |
script_args, training_args, model_args = parser.parse_args_into_dataclasses() | |
# remove output_dir if exists | |
shutil.rmtree(training_args.output_dir, ignore_errors=True) | |
################ | |
# Model & Tokenizer | |
################ | |
torch_dtype = ( | |
model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype) | |
) | |
quantization_config = get_quantization_config(model_args) | |
model_kwargs = dict( | |
revision=model_args.model_revision, | |
attn_implementation=model_args.attn_implementation, | |
torch_dtype=torch_dtype, | |
device_map=get_kbit_device_map() if quantization_config is not None else None, | |
quantization_config=quantization_config, | |
) | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, padding_side="left", trust_remote_code=model_args.trust_remote_code | |
) | |
tokenizer.add_special_tokens({"pad_token": "[PAD]"}) | |
if tokenizer.chat_template is None: | |
tokenizer.chat_template = SIMPLE_CHAT_TEMPLATE | |
value_model = AutoModelForSequenceClassification.from_pretrained( | |
training_args.reward_model_path, trust_remote_code=model_args.trust_remote_code, num_labels=1 | |
) | |
reward_model = AutoModelForSequenceClassification.from_pretrained( | |
training_args.reward_model_path, trust_remote_code=model_args.trust_remote_code, num_labels=1 | |
) | |
policy = AutoModelForCausalLM.from_pretrained( | |
training_args.sft_model_path, trust_remote_code=model_args.trust_remote_code | |
) | |
peft_config = get_peft_config(model_args) | |
if peft_config is None: | |
ref_policy = AutoModelForCausalLM.from_pretrained( | |
training_args.sft_model_path, trust_remote_code=model_args.trust_remote_code | |
) | |
else: | |
ref_policy = None | |
################ | |
# Dataset | |
################ | |
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config) | |
train_dataset = dataset[script_args.dataset_train_split] | |
eval_dataset = dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None | |
def prepare_dataset(dataset, tokenizer): | |
"""pre-tokenize the dataset before training; only collate during training""" | |
def tokenize(element): | |
input_ids = tokenizer.apply_chat_template( | |
element["messages"][:1], | |
padding=False, | |
add_generation_prompt=True, | |
) | |
return {"input_ids": input_ids, "lengths": len(input_ids)} | |
return dataset.map( | |
tokenize, | |
remove_columns=dataset.column_names, | |
num_proc=training_args.dataset_num_proc, | |
) | |
# Compute that only on the main process for faster data processing. | |
# see: https://github.com/huggingface/trl/pull/1255 | |
with PartialState().local_main_process_first(): | |
train_dataset = prepare_dataset(train_dataset, tokenizer) | |
if eval_dataset is not None: | |
eval_dataset = prepare_dataset(eval_dataset, tokenizer) | |
# filtering | |
train_dataset = train_dataset.filter(lambda x: x["lengths"] <= 512, num_proc=training_args.dataset_num_proc) | |
if eval_dataset is not None: | |
eval_dataset = eval_dataset.filter(lambda x: x["lengths"] <= 512, num_proc=training_args.dataset_num_proc) | |
assert train_dataset[0]["input_ids"][-1] != tokenizer.eos_token_id, "The last token should not be an EOS token" | |
################ | |
# Training | |
################ | |
trainer = PPOTrainer( | |
args=training_args, | |
processing_class=tokenizer, | |
model=policy, | |
ref_model=ref_policy, | |
reward_model=reward_model, | |
value_model=value_model, | |
train_dataset=train_dataset, | |
eval_dataset=eval_dataset, | |
peft_config=peft_config, | |
) | |
trainer.train() | |
# Save and push to hub | |
trainer.save_model(training_args.output_dir) | |
if training_args.push_to_hub: | |
trainer.push_to_hub(dataset_name=script_args.dataset_name) | |
trainer.generate_completions() | |