ivangabriele's picture
feat: initialize project
2f5127c verified
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
import torch
from accelerate import PartialState
from datasets import load_dataset
from transformers import (
AutoModelForCausalLM,
AutoModelForSequenceClassification,
AutoTokenizer,
HfArgumentParser,
)
from trl import (
ModelConfig,
PPOConfig,
PPOTrainer,
ScriptArguments,
get_kbit_device_map,
get_peft_config,
get_quantization_config,
)
from trl.trainer.utils import SIMPLE_CHAT_TEMPLATE
"""
python -i examples/scripts/ppo/ppo.py \
--dataset_name trl-internal-testing/descriptiveness-sentiment-trl-style \
--dataset_train_split descriptiveness \
--learning_rate 3e-6 \
--output_dir models/minimal/ppo \
--per_device_train_batch_size 64 \
--gradient_accumulation_steps 1 \
--total_episodes 10000 \
--model_name_or_path EleutherAI/pythia-1b-deduped \
--missing_eos_penalty 1.0
accelerate launch --config_file examples/accelerate_configs/deepspeed_zero3.yaml \
examples/scripts/ppo/ppo.py \
--dataset_name trl-internal-testing/descriptiveness-sentiment-trl-style \
--dataset_train_split descriptiveness \
--output_dir models/minimal/ppo \
--num_ppo_epochs 1 \
--num_mini_batches 1 \
--learning_rate 3e-6 \
--per_device_train_batch_size 1 \
--gradient_accumulation_steps 16 \
--total_episodes 10000 \
--model_name_or_path EleutherAI/pythia-1b-deduped \
--sft_model_path EleutherAI/pythia-1b-deduped \
--reward_model_path EleutherAI/pythia-1b-deduped \
--local_rollout_forward_batch_size 1 \
--missing_eos_penalty 1.0
"""
if __name__ == "__main__":
parser = HfArgumentParser((ScriptArguments, PPOConfig, ModelConfig))
script_args, training_args, model_args = parser.parse_args_into_dataclasses()
# remove output_dir if exists
shutil.rmtree(training_args.output_dir, ignore_errors=True)
################
# Model & Tokenizer
################
torch_dtype = (
model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
)
quantization_config = get_quantization_config(model_args)
model_kwargs = dict(
revision=model_args.model_revision,
attn_implementation=model_args.attn_implementation,
torch_dtype=torch_dtype,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path, padding_side="left", trust_remote_code=model_args.trust_remote_code
)
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
if tokenizer.chat_template is None:
tokenizer.chat_template = SIMPLE_CHAT_TEMPLATE
value_model = AutoModelForSequenceClassification.from_pretrained(
training_args.reward_model_path, trust_remote_code=model_args.trust_remote_code, num_labels=1
)
reward_model = AutoModelForSequenceClassification.from_pretrained(
training_args.reward_model_path, trust_remote_code=model_args.trust_remote_code, num_labels=1
)
policy = AutoModelForCausalLM.from_pretrained(
training_args.sft_model_path, trust_remote_code=model_args.trust_remote_code
)
peft_config = get_peft_config(model_args)
if peft_config is None:
ref_policy = AutoModelForCausalLM.from_pretrained(
training_args.sft_model_path, trust_remote_code=model_args.trust_remote_code
)
else:
ref_policy = None
################
# Dataset
################
dataset = load_dataset(
script_args.dataset_name, name=script_args.dataset_config, split=script_args.dataset_train_split
)
eval_samples = 100
train_dataset = dataset.select(range(len(dataset) - eval_samples))
eval_dataset = dataset.select(range(len(dataset) - eval_samples, len(dataset)))
dataset_text_field = "prompt"
def prepare_dataset(dataset, tokenizer):
"""pre-tokenize the dataset before training; only collate during training"""
def tokenize(element):
outputs = tokenizer(
element[dataset_text_field],
padding=False,
)
return {"input_ids": outputs["input_ids"]}
return dataset.map(
tokenize,
batched=True,
remove_columns=dataset.column_names,
num_proc=training_args.dataset_num_proc,
)
# Compute that only on the main process for faster data processing.
# see: https://github.com/huggingface/trl/pull/1255
with PartialState().local_main_process_first():
train_dataset = prepare_dataset(train_dataset, tokenizer)
eval_dataset = prepare_dataset(eval_dataset, tokenizer)
################
# Training
################
trainer = PPOTrainer(
args=training_args,
processing_class=tokenizer,
model=policy,
ref_model=ref_policy,
reward_model=reward_model,
value_model=value_model,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
peft_config=peft_config,
)
trainer.train()
# Save and push to hub
trainer.save_model(training_args.output_dir)
if training_args.push_to_hub:
trainer.push_to_hub(dataset_name=script_args.dataset_name)
trainer.generate_completions()