Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Without dataset streaming: | |
``` | |
accelerate launch examples/scripts/dpo_vlm.py \ | |
--dataset_name HuggingFaceH4/rlaif-v_formatted \ | |
--model_name_or_path Qwen/Qwen2.5-VL-3B-Instruct \ | |
--per_device_train_batch_size 2 \ | |
--gradient_accumulation_steps 32 \ | |
--dataset_num_proc 32 \ | |
--output_dir dpo_idefics_rlaif-v \ | |
--bf16 \ | |
--torch_dtype bfloat16 \ | |
--gradient_checkpointing \ | |
--use_peft \ | |
--lora_target_modules=all-linear \ | |
--report_to wandb | |
``` | |
With dataset streaming: | |
``` | |
accelerate launch examples/scripts/dpo_vlm.py \ | |
--dataset_name HuggingFaceH4/rlaif-v_formatted \ | |
--dataset_streaming \ | |
--model_name_or_path Qwen/Qwen2.5-VL-3B-Instruct \ | |
--per_device_train_batch_size 2 \ | |
--max_steps 100 \ | |
--gradient_accumulation_steps 32 \ | |
--dataset_num_proc 32 \ | |
--output_dir dpo_idefics_rlaif-v \ | |
--bf16 \ | |
--torch_dtype bfloat16 \ | |
--gradient_checkpointing \ | |
--use_peft \ | |
--lora_target_modules=all-linear \ | |
--report_to wandb | |
``` | |
""" | |
import torch | |
from datasets import load_dataset | |
from transformers import AutoModelForVision2Seq, AutoProcessor | |
from trl import ( | |
DPOConfig, | |
DPOTrainer, | |
ModelConfig, | |
ScriptArguments, | |
TrlParser, | |
get_kbit_device_map, | |
get_peft_config, | |
get_quantization_config, | |
) | |
if __name__ == "__main__": | |
parser = TrlParser((ScriptArguments, DPOConfig, ModelConfig)) | |
script_args, training_args, model_args = parser.parse_args_and_config() | |
################ | |
# Model & Tokenizer | |
################ | |
torch_dtype = ( | |
model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype) | |
) | |
quantization_config = get_quantization_config(model_args) | |
model_kwargs = dict( | |
revision=model_args.model_revision, | |
attn_implementation=model_args.attn_implementation, | |
torch_dtype=torch_dtype, | |
device_map=get_kbit_device_map() if quantization_config is not None else None, | |
quantization_config=quantization_config, | |
) | |
model = AutoModelForVision2Seq.from_pretrained( | |
model_args.model_name_or_path, | |
trust_remote_code=model_args.trust_remote_code, | |
**model_kwargs, | |
) | |
peft_config = get_peft_config(model_args) | |
if peft_config is None: | |
ref_model = AutoModelForVision2Seq.from_pretrained( | |
model_args.model_name_or_path, | |
trust_remote_code=model_args.trust_remote_code, | |
**model_kwargs, | |
) | |
else: | |
ref_model = None | |
processor = AutoProcessor.from_pretrained( | |
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, do_image_splitting=False | |
) | |
tokenizer = processor.tokenizer | |
# Set up the chat template | |
if model.config.model_type == "idefics2": | |
pass # the processor already has a valid chat template | |
elif model.config.model_type == "paligemma": | |
processor.chat_template = """{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}<|im_start|>{% if message['role'] == 'user' %}USER: {% else %}ASSISTANT: {% endif %}{% for item in message['content'] if item['type'] == 'text' %}{{ item['text'] }}<|im_end|>{% endfor %}{% if message['role'] == 'user' %} {% else %}{{eos_token}}{% endif %}{% endfor %}{% if add_generation_prompt %}ASSISTANT: {% endif %}""" | |
elif model.config.model_type == "llava": | |
processor.chat_template = """{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{% if message['role'] == 'user' %}USER: {% else %}ASSISTANT: {% endif %}{% for item in message['content'] %}{% if item['type'] == 'text' %}{{ item['text'] }}{% elif item['type'] == 'image' %}<image>{% endif %}{% endfor %}{% if message['role'] == 'user' %} {% else %}{{eos_token}}{% endif %}{% endfor %}{% if add_generation_prompt %}ASSISTANT: {% endif %}""" | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
if script_args.ignore_bias_buffers: | |
# torch distributed hack | |
model._ddp_params_and_buffers_to_ignore = [ | |
name for name, buffer in model.named_buffers() if buffer.dtype == torch.bool | |
] | |
################ | |
# Dataset | |
################ | |
dataset = load_dataset( | |
script_args.dataset_name, | |
name=script_args.dataset_config, | |
streaming=script_args.dataset_streaming, | |
) | |
################ | |
# Training | |
################ | |
trainer = DPOTrainer( | |
model, | |
ref_model, | |
args=training_args, | |
train_dataset=dataset[script_args.dataset_train_split], | |
eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, | |
processing_class=processor, | |
peft_config=peft_config, | |
) | |
trainer.train() | |
# Save and push to hub | |
trainer.save_model(training_args.output_dir) | |
if training_args.push_to_hub: | |
trainer.push_to_hub(dataset_name=script_args.dataset_name) | |