Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Usage: | |
python examples/scripts/dpo_online.py \ | |
--model_name_or_path trl-lib/pythia-1b-deduped-tldr-sft \ | |
--reward_model_path trl-lib/pythia-1b-deduped-tldr-rm \ | |
--dataset_name trl-lib/tldr \ | |
--learning_rate 5.0e-7 \ | |
--output_dir pythia-1b-tldr-online-dpo \ | |
--per_device_train_batch_size 8 \ | |
--gradient_accumulation_steps 16 \ | |
--warmup_ratio 0.1 \ | |
--missing_eos_penalty 1.0 | |
With LoRA: | |
python examples/scripts/dpo_online.py \ | |
--model_name_or_path trl-lib/pythia-1b-deduped-tldr-sft \ | |
--reward_model_path trl-lib/pythia-1b-deduped-tldr-rm \ | |
--dataset_name trl-lib/tldr \ | |
--learning_rate 5.0e-6 \ | |
--output_dir pythia-1b-tldr-online-dpo \ | |
--per_device_train_batch_size 16 \ | |
--gradient_accumulation_steps 8 \ | |
--warmup_ratio 0.1 \ | |
--missing_eos_penalty 1.0 \ | |
--use_peft | |
""" | |
import torch | |
from datasets import load_dataset | |
from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer, GenerationConfig | |
from trl import ( | |
HfPairwiseJudge, | |
LogCompletionsCallback, | |
ModelConfig, | |
OnlineDPOConfig, | |
OnlineDPOTrainer, | |
OpenAIPairwiseJudge, | |
PairRMJudge, | |
ScriptArguments, | |
TrlParser, | |
get_kbit_device_map, | |
get_peft_config, | |
get_quantization_config, | |
) | |
from trl.trainer.utils import SIMPLE_CHAT_TEMPLATE | |
JUDGES = {"pair_rm": PairRMJudge, "openai": OpenAIPairwiseJudge, "hf": HfPairwiseJudge} | |
if __name__ == "__main__": | |
parser = TrlParser((ScriptArguments, OnlineDPOConfig, ModelConfig)) | |
script_args, training_args, model_args = parser.parse_args_and_config() | |
training_args.gradient_checkpointing_kwargs = {"use_reentrant": True} | |
torch_dtype = ( | |
model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype) | |
) | |
quantization_config = get_quantization_config(model_args) | |
model_kwargs = dict( | |
revision=model_args.model_revision, | |
attn_implementation=model_args.attn_implementation, | |
torch_dtype=torch_dtype, | |
use_cache=False if training_args.gradient_checkpointing else True, | |
device_map=get_kbit_device_map() if quantization_config is not None else None, | |
quantization_config=quantization_config, | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, **model_kwargs | |
) | |
if training_args.reward_model_path is not None: | |
reward_model = AutoModelForSequenceClassification.from_pretrained( | |
training_args.reward_model_path, | |
num_labels=1, | |
trust_remote_code=model_args.trust_remote_code, | |
**model_kwargs, | |
) | |
reward_tokenizer = AutoTokenizer.from_pretrained( | |
training_args.reward_model_path, | |
trust_remote_code=model_args.trust_remote_code, | |
truncation=True, | |
truncation_side="left", # since we judge the completion, truncating left is more appropriate | |
) | |
else: | |
reward_model = None | |
reward_tokenizer = None | |
if training_args.judge is not None: | |
judge_cls = JUDGES[training_args.judge] | |
judge = judge_cls() | |
else: | |
judge = None | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, | |
padding_side="left", | |
trust_remote_code=model_args.trust_remote_code, | |
**model_kwargs, | |
) | |
if tokenizer.chat_template is None: | |
tokenizer.chat_template = SIMPLE_CHAT_TEMPLATE | |
if tokenizer.pad_token_id is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config) | |
trainer = OnlineDPOTrainer( | |
model=model, | |
reward_model=reward_model, | |
judge=judge, | |
args=training_args, | |
train_dataset=dataset[script_args.dataset_train_split], | |
eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, | |
processing_class=tokenizer, | |
reward_processing_class=reward_tokenizer, | |
peft_config=get_peft_config(model_args), | |
) | |
if training_args.eval_strategy != "no": | |
generation_config = GenerationConfig( | |
max_new_tokens=training_args.max_new_tokens, do_sample=True, temperature=training_args.temperature | |
) | |
completions_callback = LogCompletionsCallback(trainer, generation_config, num_prompts=8) | |
trainer.add_callback(completions_callback) | |
trainer.train() | |
# Save and push to hub | |
trainer.save_model(training_args.output_dir) | |
if training_args.push_to_hub: | |
trainer.push_to_hub(dataset_name=script_args.dataset_name) | |