Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Run the CPO training script with the following command with some example arguments. | |
In general, the optimal configuration for CPO will be similar to that of DPO: | |
# regular: | |
python examples/scripts/cpo.py \ | |
--dataset_name trl-lib/ultrafeedback_binarized \ | |
--model_name_or_path=gpt2 \ | |
--per_device_train_batch_size 4 \ | |
--max_steps 1000 \ | |
--learning_rate 8e-6 \ | |
--gradient_accumulation_steps 1 \ | |
--logging_steps 10 \ | |
--eval_steps 500 \ | |
--output_dir="gpt2-aligned-cpo" \ | |
--warmup_steps 150 \ | |
--report_to wandb \ | |
--bf16 \ | |
--logging_first_step \ | |
--no_remove_unused_columns | |
# peft: | |
python examples/scripts/cpo.py \ | |
--dataset_name trl-lib/ultrafeedback_binarized \ | |
--model_name_or_path=gpt2 \ | |
--per_device_train_batch_size 4 \ | |
--max_steps 1000 \ | |
--learning_rate 8e-5 \ | |
--gradient_accumulation_steps 1 \ | |
--logging_steps 10 \ | |
--eval_steps 500 \ | |
--output_dir="gpt2-lora-aligned-cpo" \ | |
--optim rmsprop \ | |
--warmup_steps 150 \ | |
--report_to wandb \ | |
--bf16 \ | |
--logging_first_step \ | |
--no_remove_unused_columns \ | |
--use_peft \ | |
--lora_r=16 \ | |
--lora_alpha=16 | |
""" | |
from datasets import load_dataset | |
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser | |
from trl import CPOConfig, CPOTrainer, ModelConfig, ScriptArguments, get_peft_config | |
from trl.trainer.utils import SIMPLE_CHAT_TEMPLATE | |
if __name__ == "__main__": | |
parser = HfArgumentParser((ScriptArguments, CPOConfig, ModelConfig)) | |
script_args, training_args, model_args = parser.parse_args_into_dataclasses() | |
################ | |
# Model & Tokenizer | |
################ | |
model = AutoModelForCausalLM.from_pretrained( | |
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code | |
) | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code | |
) | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
################ | |
# Dataset | |
################ | |
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config) | |
if tokenizer.chat_template is None: | |
tokenizer.chat_template = SIMPLE_CHAT_TEMPLATE | |
################ | |
# Training | |
################ | |
trainer = CPOTrainer( | |
model, | |
args=training_args, | |
train_dataset=dataset[script_args.dataset_train_split], | |
eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, | |
processing_class=tokenizer, | |
peft_config=get_peft_config(model_args), | |
) | |
# train and save the model | |
trainer.train() | |
# Save and push to hub | |
trainer.save_model(training_args.output_dir) | |
if training_args.push_to_hub: | |
trainer.push_to_hub(dataset_name=script_args.dataset_name) | |