Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Total Batch size = 128 = 4 (num_gpus) * 8 (per_device_batch) * 4 (accumulation steps) | |
Feel free to reduce batch size or increasing truncated_rand_backprop_min to a higher value to reduce memory usage. | |
CUDA_VISIBLE_DEVICES=0,1,2,3 python examples/scripts/alignprop.py \ | |
--num_epochs=20 \ | |
--train_gradient_accumulation_steps=4 \ | |
--sample_num_steps=50 \ | |
--train_batch_size=8 \ | |
--tracker_project_name="stable_diffusion_training" \ | |
--log_with="wandb" | |
""" | |
from dataclasses import dataclass, field | |
import numpy as np | |
from transformers import HfArgumentParser | |
from trl import AlignPropConfig, AlignPropTrainer, DefaultDDPOStableDiffusionPipeline | |
from trl.models.auxiliary_modules import aesthetic_scorer | |
class ScriptArguments: | |
r""" | |
Arguments for the script. | |
Args: | |
pretrained_model (`str`, *optional*, defaults to `"runwayml/stable-diffusion-v1-5"`): | |
Pretrained model to use. | |
pretrained_revision (`str`, *optional*, defaults to `"main"`): | |
Pretrained model revision to use. | |
hf_hub_model_id (`str`, *optional*, defaults to `"alignprop-finetuned-stable-diffusion"`): | |
HuggingFace repo to save model weights to. | |
hf_hub_aesthetic_model_id (`str`, *optional*, defaults to `"trl-lib/ddpo-aesthetic-predictor"`): | |
Hugging Face model ID for aesthetic scorer model weights. | |
hf_hub_aesthetic_model_filename (`str`, *optional*, defaults to `"aesthetic-model.pth"`): | |
Hugging Face model filename for aesthetic scorer model weights. | |
use_lora (`bool`, *optional*, defaults to `True`): | |
Whether to use LoRA. | |
""" | |
pretrained_model: str = field( | |
default="runwayml/stable-diffusion-v1-5", metadata={"help": "Pretrained model to use."} | |
) | |
pretrained_revision: str = field(default="main", metadata={"help": "Pretrained model revision to use."}) | |
hf_hub_model_id: str = field( | |
default="alignprop-finetuned-stable-diffusion", metadata={"help": "HuggingFace repo to save model weights to."} | |
) | |
hf_hub_aesthetic_model_id: str = field( | |
default="trl-lib/ddpo-aesthetic-predictor", | |
metadata={"help": "Hugging Face model ID for aesthetic scorer model weights."}, | |
) | |
hf_hub_aesthetic_model_filename: str = field( | |
default="aesthetic-model.pth", | |
metadata={"help": "Hugging Face model filename for aesthetic scorer model weights."}, | |
) | |
use_lora: bool = field(default=True, metadata={"help": "Whether to use LoRA."}) | |
# list of example prompts to feed stable diffusion | |
animals = [ | |
"cat", | |
"dog", | |
"horse", | |
"monkey", | |
"rabbit", | |
"zebra", | |
"spider", | |
"bird", | |
"sheep", | |
"deer", | |
"cow", | |
"goat", | |
"lion", | |
"frog", | |
"chicken", | |
"duck", | |
"goose", | |
"bee", | |
"pig", | |
"turkey", | |
"fly", | |
"llama", | |
"camel", | |
"bat", | |
"gorilla", | |
"hedgehog", | |
"kangaroo", | |
] | |
def prompt_fn(): | |
return np.random.choice(animals), {} | |
def image_outputs_logger(image_pair_data, global_step, accelerate_logger): | |
# For the sake of this example, we will only log the last batch of images | |
# and associated data | |
result = {} | |
images, prompts, _ = [image_pair_data["images"], image_pair_data["prompts"], image_pair_data["rewards"]] | |
for i, image in enumerate(images[:4]): | |
prompt = prompts[i] | |
result[f"{prompt}"] = image.unsqueeze(0).float() | |
accelerate_logger.log_images( | |
result, | |
step=global_step, | |
) | |
if __name__ == "__main__": | |
parser = HfArgumentParser((ScriptArguments, AlignPropConfig)) | |
script_args, training_args = parser.parse_args_into_dataclasses() | |
training_args.project_kwargs = { | |
"logging_dir": "./logs", | |
"automatic_checkpoint_naming": True, | |
"total_limit": 5, | |
"project_dir": "./save", | |
} | |
pipeline = DefaultDDPOStableDiffusionPipeline( | |
script_args.pretrained_model, | |
pretrained_model_revision=script_args.pretrained_revision, | |
use_lora=script_args.use_lora, | |
) | |
trainer = AlignPropTrainer( | |
training_args, | |
aesthetic_scorer(script_args.hf_hub_aesthetic_model_id, script_args.hf_hub_aesthetic_model_filename), | |
prompt_fn, | |
pipeline, | |
image_samples_hook=image_outputs_logger, | |
) | |
trainer.train() | |
# Save and push to hub | |
trainer.save_model(training_args.output_dir) | |
if training_args.push_to_hub: | |
trainer.push_to_hub(dataset_name=script_args.dataset_name) | |