Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import config | |
import torch | |
from custom_trainer import LayerSkipSFTTrainer | |
from datasets import load_dataset | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from trl import DataCollatorForCompletionOnlyLM, SFTConfig | |
def formatting_prompts_func(example): | |
text = f"### Instruction: {example['utterance']}\n ### Response: {example['semantic_parse']}" | |
# Inject eos_token as a string before tokenization, because they are not always added | |
# See: https://github.com/huggingface/transformers/issues/22794 and | |
# https://github.com/huggingface/trl/issues/1623 | |
if tokenizer.eos_token: # usually something like "</s>" for GPT2 or "<|endoftext|>" | |
text += f"{tokenizer.eos_token}" | |
return text | |
if __name__ == "__main__": | |
# load the dataset | |
print("[INFO] loading the dataset...") | |
train_dataset = load_dataset(config.dataset_name, split="train") | |
print(f"output_root_dir: {config.output_root_dir}") | |
print(f"hub_model_id: {config.hub_model_id}") | |
# load the model and tokenizer | |
print("[INFO] loading the model and tokenizer...") | |
model = AutoModelForCausalLM.from_pretrained(config.model_name, device_map="auto", torch_dtype=torch.bfloat16) | |
tokenizer = AutoTokenizer.from_pretrained(config.tokenizer_name, add_eos_token=True) | |
# adding pad and eos tokens if not provided in the tokenizer | |
if tokenizer.pad_token is None: | |
# Add '[PAD]' token if it doesn't exist | |
tokenizer.add_special_tokens({"pad_token": "[PAD]"}) | |
model.resize_token_embeddings(len(tokenizer)) | |
model.config.pad_token_id = tokenizer.pad_token_id | |
if tokenizer.eos_token is None or tokenizer.eos_token == tokenizer.bos_token: | |
# Add '[EOS]' token if it doesn't exist | |
tokenizer.add_special_tokens({"eos_token": "[EOS]"}) | |
model.resize_token_embeddings(len(tokenizer)) | |
model.config.eos_token_id = tokenizer.eos_token_id | |
response_template = " ### Response:" | |
collator = DataCollatorForCompletionOnlyLM(response_template, tokenizer=tokenizer) | |
args = SFTConfig( | |
do_train=True, | |
bf16=True, | |
max_seq_length=None, | |
per_device_train_batch_size=config.per_device_train_batch_size, | |
gradient_accumulation_steps=config.gradient_accumulation_steps, | |
learning_rate=config.learning_rate, | |
packing=False, | |
num_train_epochs=1.0, | |
report_to="none", | |
push_to_hub=True, | |
hub_model_id=config.hub_model_id, | |
output_dir=config.output_dir, | |
logging_steps=500, | |
save_steps=1000, | |
save_total_limit=2, | |
) | |
trainer = LayerSkipSFTTrainer( | |
model, | |
train_dataset=train_dataset, | |
args=args, | |
formatting_func=formatting_prompts_func, | |
data_collator=collator, | |
) | |
trainer.train() | |