Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass, field | |
from typing import Optional | |
from datasets import load_dataset | |
from huggingface_hub import ModelCard | |
from transformers import HfArgumentParser | |
class ScriptArguments: | |
r""" | |
Arguments for the script. | |
Args: | |
push_to_hub (`bool`, *optional*, defaults to `False`): | |
Whether to push the dataset to the Hugging Face Hub. | |
repo_id (`str`, *optional*, defaults to `"trl-lib/ultrafeedback-prompt"`): | |
Hugging Face repository ID to push the dataset to. | |
dataset_num_proc (`int` or `None`, *optional*, defaults to `None`): | |
Number of workers to use for dataset processing. | |
""" | |
push_to_hub: bool = field( | |
default=False, | |
metadata={"help": "Whether to push the dataset to the Hugging Face Hub."}, | |
) | |
repo_id: str = field( | |
default="trl-lib/ultrafeedback-prompt", | |
metadata={"help": "Hugging Face repository ID to push the dataset to."}, | |
) | |
dataset_num_proc: Optional[int] = field( | |
default=None, | |
metadata={"help": "Number of workers to use for dataset processing."}, | |
) | |
def to_unpaired_preference(example): | |
prompt = [{"role": "user", "content": example["instruction"]}] | |
return {"prompt": prompt} | |
def drop_long_prompt(example): | |
if len(example["prompt"][0]["content"]) > 512: | |
return False | |
else: | |
return True | |
model_card = ModelCard(""" | |
--- | |
tags: [trl] | |
--- | |
# UltraFeedback - Prompts Dataset | |
## Summary | |
The UltraFeedback - Prompts dataset is a processed version of the [UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset for model evaluation on specific aspects like helpfulness, honesty, and instruction-following. | |
## Data Structure | |
- **Format**: [Conversational](https://huggingface.co/docs/trl/main/dataset_formats#conversational) | |
- **Type**: [Prompt-only](https://huggingface.co/docs/trl/main/dataset_formats#prompt-only) | |
Column: | |
- `"prompt"`: The input question or instruction provided to the model. | |
## Generation script | |
The script used to generate this dataset can be found [here](https://github.com/huggingface/trl/blob/main/examples/datasets/ultrafeedback-prompt.py). | |
""") | |
if __name__ == "__main__": | |
parser = HfArgumentParser(ScriptArguments) | |
script_args = parser.parse_args_into_dataclasses()[0] | |
dataset = load_dataset("openbmb/UltraFeedback", split="train") | |
dataset = dataset.map( | |
to_unpaired_preference, | |
remove_columns=["source", "instruction", "models", "completions", "correct_answers", "incorrect_answers"], | |
num_proc=script_args.dataset_num_proc, | |
) | |
dataset = dataset.filter(drop_long_prompt) | |
dataset = dataset.train_test_split(test_size=0.05, seed=42) | |
if script_args.push_to_hub: | |
dataset.push_to_hub(script_args.repo_id) | |
model_card.push_to_hub(script_args.repo_id, repo_type="dataset") | |