trl-sandbox / examples /datasets /ultrafeedback-prompt.py
ivangabriele's picture
feat: initialize project
2f5127c verified
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from typing import Optional
from datasets import load_dataset
from huggingface_hub import ModelCard
from transformers import HfArgumentParser
@dataclass
class ScriptArguments:
r"""
Arguments for the script.
Args:
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether to push the dataset to the Hugging Face Hub.
repo_id (`str`, *optional*, defaults to `"trl-lib/ultrafeedback-prompt"`):
Hugging Face repository ID to push the dataset to.
dataset_num_proc (`int` or `None`, *optional*, defaults to `None`):
Number of workers to use for dataset processing.
"""
push_to_hub: bool = field(
default=False,
metadata={"help": "Whether to push the dataset to the Hugging Face Hub."},
)
repo_id: str = field(
default="trl-lib/ultrafeedback-prompt",
metadata={"help": "Hugging Face repository ID to push the dataset to."},
)
dataset_num_proc: Optional[int] = field(
default=None,
metadata={"help": "Number of workers to use for dataset processing."},
)
def to_unpaired_preference(example):
prompt = [{"role": "user", "content": example["instruction"]}]
return {"prompt": prompt}
def drop_long_prompt(example):
if len(example["prompt"][0]["content"]) > 512:
return False
else:
return True
model_card = ModelCard("""
---
tags: [trl]
---
# UltraFeedback - Prompts Dataset
## Summary
The UltraFeedback - Prompts dataset is a processed version of the [UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset for model evaluation on specific aspects like helpfulness, honesty, and instruction-following.
## Data Structure
- **Format**: [Conversational](https://huggingface.co/docs/trl/main/dataset_formats#conversational)
- **Type**: [Prompt-only](https://huggingface.co/docs/trl/main/dataset_formats#prompt-only)
Column:
- `"prompt"`: The input question or instruction provided to the model.
## Generation script
The script used to generate this dataset can be found [here](https://github.com/huggingface/trl/blob/main/examples/datasets/ultrafeedback-prompt.py).
""")
if __name__ == "__main__":
parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]
dataset = load_dataset("openbmb/UltraFeedback", split="train")
dataset = dataset.map(
to_unpaired_preference,
remove_columns=["source", "instruction", "models", "completions", "correct_answers", "incorrect_answers"],
num_proc=script_args.dataset_num_proc,
)
dataset = dataset.filter(drop_long_prompt)
dataset = dataset.train_test_split(test_size=0.05, seed=42)
if script_args.push_to_hub:
dataset.push_to_hub(script_args.repo_id)
model_card.push_to_hub(script_args.repo_id, repo_type="dataset")