Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass, field | |
from typing import Optional | |
from datasets import features, load_dataset | |
from huggingface_hub import ModelCard | |
from transformers import HfArgumentParser | |
class ScriptArguments: | |
r""" | |
Arguments for the script. | |
Args: | |
push_to_hub (`bool`, *optional*, defaults to `False`): | |
Whether to push the dataset to the Hugging Face Hub. | |
repo_id (`str`, *optional*, defaults to `"trl-lib/rlaif-v"`): | |
Hugging Face repository ID to push the dataset to. | |
dataset_num_proc (`int` or `None`, *optional*, defaults to `None`): | |
Number of workers to use for dataset processing. | |
""" | |
push_to_hub: bool = field( | |
default=False, | |
metadata={"help": "Whether to push the dataset to the Hugging Face Hub."}, | |
) | |
repo_id: str = field( | |
default="trl-lib/rlaif-v", | |
metadata={"help": "Hugging Face repository ID to push the dataset to."}, | |
) | |
dataset_num_proc: Optional[int] = field( | |
default=None, | |
metadata={"help": "Number of workers to use for dataset processing."}, | |
) | |
def to_conversational(example): | |
""" | |
Convert prompt from "xxx" to [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "xxx"}]}] | |
and chosen and rejected from "xxx" to [{"role": "assistant", "content": [{"type": "text", "text": "xxx"}]}]. | |
Images are wrapped into a list. | |
""" | |
prompt = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": example["question"]}]}] | |
chosen = [{"role": "assistant", "content": [{"type": "text", "text": example["chosen"]}]}] | |
rejected = [{"role": "assistant", "content": [{"type": "text", "text": example["rejected"]}]}] | |
return {"prompt": prompt, "images": [example["image"]], "chosen": chosen, "rejected": rejected} | |
model_card = ModelCard(""" | |
--- | |
tags: [trl] | |
--- | |
# RLAIF-V Dataset | |
## Summary | |
The RLAIF-V dataset is a processed version of the [openbmb/RLAIF-V-Dataset](https://huggingface.co/datasets/openbmb/RLAIF-V-Dataset#dataset-card-for-rlaif-v-dataset), specifically curated to train vision-language models using the [TRL library](https://github.com/huggingface/trl) for preference learning tasks. It contains 83,132 high-quality comparison pairs, each comprising an image and two textual descriptions: one preferred and one rejected. This dataset enables models to learn human preferences in visual contexts, enhancing their ability to generate and evaluate image captions. | |
## Data Structure | |
- **Format**: [Conversational](https://huggingface.co/docs/trl/main/dataset_formats#conversational) | |
- **Type**: [Preference](https://huggingface.co/docs/trl/main/dataset_formats#preference) | |
Columns: | |
- `"prompt"`: The task related to the image. | |
- `"images"`: The image. | |
- `"chosen"`: The preferred answer. | |
- `"rejected"`: An alternative answer that was not preferred. | |
This structure allows models to learn to prefer the _chosen_ response over the _rejected_ one, thereby aligning with human preferences in visual tasks. | |
## Generation script | |
The script used to generate this dataset can be found [here](https://github.com/huggingface/trl/blob/main/examples/datasets/rlaif-v.py). | |
""") | |
if __name__ == "__main__": | |
parser = HfArgumentParser(ScriptArguments) | |
script_args = parser.parse_args_into_dataclasses()[0] | |
dataset = load_dataset("openbmb/RLAIF-V-Dataset", split="train") | |
dataset = dataset.map( | |
to_conversational, | |
num_proc=script_args.dataset_num_proc, | |
remove_columns=dataset.column_names, | |
writer_batch_size=128, | |
) | |
# Cast the images to Sequence[Image] to avoid bytes format | |
f = dataset.features | |
f["images"] = features.Sequence(features.Image(decode=True)) | |
dataset = dataset.cast(f) | |
dataset = dataset.train_test_split(test_size=0.01, writer_batch_size=128) | |
if script_args.push_to_hub: | |
dataset.push_to_hub(script_args.repo_id) | |
model_card.push_to_hub(script_args.repo_id, repo_type="dataset") | |