Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass, field | |
from typing import Optional | |
from datasets import load_dataset | |
from huggingface_hub import ModelCard | |
from transformers import HfArgumentParser | |
class ScriptArguments: | |
r""" | |
Arguments for the script. | |
Args: | |
push_to_hub (`bool`, *optional*, defaults to `False`): | |
Whether to push the dataset to the Hugging Face Hub. | |
repo_id (`str`, *optional*, defaults to `"trl-lib/prm800k"`): | |
Hugging Face repository ID to push the dataset to. | |
dataset_num_proc (`int` or `None`, *optional*, defaults to `None`): | |
Number of workers to use for dataset processing. | |
""" | |
push_to_hub: bool = field( | |
default=False, | |
metadata={"help": "Whether to push the dataset to the Hugging Face Hub."}, | |
) | |
repo_id: str = field( | |
default="trl-lib/prm800k", | |
metadata={"help": "Hugging Face repository ID to push the dataset to."}, | |
) | |
dataset_num_proc: Optional[int] = field( | |
default=None, | |
metadata={"help": "Number of workers to use for dataset processing."}, | |
) | |
def process_example(example): | |
outputs = [] | |
prompt = example["question"]["problem"] | |
# Iterate through each step | |
previous_completions = [] | |
previous_labels = [] | |
for step in example["label"]["steps"]: | |
if step["completions"] is None and step["human_completion"] is None and step["chosen_completion"] is None: | |
# happens sometimes | |
break | |
# Loop through completions | |
for completion_idx, completion in enumerate(step["completions"]): | |
# For every completion that are not chosen, we are in a terminal state, so we can add it to the list of outputs. | |
if completion_idx != step["chosen_completion"]: | |
content = completion["text"] | |
completions = previous_completions[:] + [content] | |
label = completion["rating"] == 1 | |
labels = previous_labels[:] + [label] | |
outputs.append({"prompt": prompt, "completions": completions, "labels": labels}) | |
# Now, exapand the previous completions and labels | |
if step["chosen_completion"] is not None: | |
chosen_completion = step["completions"][step["chosen_completion"]] | |
label = chosen_completion["rating"] == 1 | |
elif step["human_completion"] is not None: | |
chosen_completion = step["human_completion"] | |
label = True | |
else: | |
break | |
content = chosen_completion["text"] | |
previous_completions.append(content) | |
previous_labels.append(label) | |
# Last step: we are in a terminal state, so we can add it to the list of outputs | |
outputs.append({"prompt": prompt, "completions": previous_completions, "labels": previous_labels}) | |
return outputs | |
def process_batch(examples): | |
outputs = [] | |
batch_size = len(examples["label"]) | |
for idx in range(batch_size): | |
example = {k: v[idx] for k, v in examples.items()} | |
outputs.extend(process_example(example)) | |
# list of dict to dict of list | |
outputs = {k: [v[k] for v in outputs] for k in outputs[0]} | |
return outputs | |
model_card = ModelCard(""" | |
--- | |
tags: [trl] | |
--- | |
# PRM800K Dataset | |
## Summary | |
The PRM800K dataset is a processed version of [OpenAI's PRM800K](https://github.com/openai/prm800k), designed to train models using the [TRL library](https://github.com/huggingface/trl) for stepwise supervision tasks. It contains 800,000 step-level correctness labels for model-generated solutions to problems from the MATH dataset. This dataset enables models to learn and verify each step of a solution, enhancing their reasoning capabilities. | |
## Data Structure | |
- **Format**: [Standard](https://huggingface.co/docs/trl/main/dataset_formats#standard) | |
- **Type**: [Stepwise supervision](https://huggingface.co/docs/trl/main/dataset_formats#stepwise-supervision) | |
Columns: | |
- `"prompt"`: The problem statement. | |
- `"completions"`: A list of reasoning steps generated to solve the problem. | |
- `"labels"`: A list of booleans or floats indicating the correctness of each corresponding reasoning step. | |
This structure allows models to learn the correctness of each step in a solution, facilitating improved reasoning and problem-solving abilities. | |
## Generation script | |
The script used to generate this dataset can be found [here](https://github.com/huggingface/trl/blob/main/examples/datasets/prm800k.py). | |
""") | |
if __name__ == "__main__": | |
parser = HfArgumentParser(ScriptArguments) | |
script_args = parser.parse_args_into_dataclasses()[0] | |
data_files = { | |
"train": "https://github.com/openai/prm800k/raw/refs/heads/main/prm800k/data/phase1_train.jsonl", | |
"test": "https://github.com/openai/prm800k/raw/refs/heads/main/prm800k/data/phase1_test.jsonl", | |
} | |
dataset = load_dataset("json", data_files=data_files) | |
dataset = dataset.map( | |
process_batch, | |
batched=True, | |
batch_size=10, | |
remove_columns=[ | |
"labeler", | |
"timestamp", | |
"generation", | |
"is_quality_control_question", | |
"is_initial_screening_question", | |
"question", | |
"label", | |
], | |
num_proc=script_args.dataset_num_proc, | |
) | |
if script_args.push_to_hub: | |
dataset.push_to_hub(script_args.repo_id) | |
model_card.push_to_hub(script_args.repo_id, repo_type="dataset") | |