ivangabriele's picture
feat: initialize project
2f5127c verified
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from typing import Optional
from datasets import load_dataset
from huggingface_hub import ModelCard
from transformers import HfArgumentParser
@dataclass
class ScriptArguments:
r"""
Arguments for the script.
Args:
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether to push the dataset to the Hugging Face Hub.
repo_id (`str`, *optional*, defaults to `"trl-lib/prm800k"`):
Hugging Face repository ID to push the dataset to.
dataset_num_proc (`int` or `None`, *optional*, defaults to `None`):
Number of workers to use for dataset processing.
"""
push_to_hub: bool = field(
default=False,
metadata={"help": "Whether to push the dataset to the Hugging Face Hub."},
)
repo_id: str = field(
default="trl-lib/prm800k",
metadata={"help": "Hugging Face repository ID to push the dataset to."},
)
dataset_num_proc: Optional[int] = field(
default=None,
metadata={"help": "Number of workers to use for dataset processing."},
)
def process_example(example):
outputs = []
prompt = example["question"]["problem"]
# Iterate through each step
previous_completions = []
previous_labels = []
for step in example["label"]["steps"]:
if step["completions"] is None and step["human_completion"] is None and step["chosen_completion"] is None:
# happens sometimes
break
# Loop through completions
for completion_idx, completion in enumerate(step["completions"]):
# For every completion that are not chosen, we are in a terminal state, so we can add it to the list of outputs.
if completion_idx != step["chosen_completion"]:
content = completion["text"]
completions = previous_completions[:] + [content]
label = completion["rating"] == 1
labels = previous_labels[:] + [label]
outputs.append({"prompt": prompt, "completions": completions, "labels": labels})
# Now, exapand the previous completions and labels
if step["chosen_completion"] is not None:
chosen_completion = step["completions"][step["chosen_completion"]]
label = chosen_completion["rating"] == 1
elif step["human_completion"] is not None:
chosen_completion = step["human_completion"]
label = True
else:
break
content = chosen_completion["text"]
previous_completions.append(content)
previous_labels.append(label)
# Last step: we are in a terminal state, so we can add it to the list of outputs
outputs.append({"prompt": prompt, "completions": previous_completions, "labels": previous_labels})
return outputs
def process_batch(examples):
outputs = []
batch_size = len(examples["label"])
for idx in range(batch_size):
example = {k: v[idx] for k, v in examples.items()}
outputs.extend(process_example(example))
# list of dict to dict of list
outputs = {k: [v[k] for v in outputs] for k in outputs[0]}
return outputs
model_card = ModelCard("""
---
tags: [trl]
---
# PRM800K Dataset
## Summary
The PRM800K dataset is a processed version of [OpenAI's PRM800K](https://github.com/openai/prm800k), designed to train models using the [TRL library](https://github.com/huggingface/trl) for stepwise supervision tasks. It contains 800,000 step-level correctness labels for model-generated solutions to problems from the MATH dataset. This dataset enables models to learn and verify each step of a solution, enhancing their reasoning capabilities.
## Data Structure
- **Format**: [Standard](https://huggingface.co/docs/trl/main/dataset_formats#standard)
- **Type**: [Stepwise supervision](https://huggingface.co/docs/trl/main/dataset_formats#stepwise-supervision)
Columns:
- `"prompt"`: The problem statement.
- `"completions"`: A list of reasoning steps generated to solve the problem.
- `"labels"`: A list of booleans or floats indicating the correctness of each corresponding reasoning step.
This structure allows models to learn the correctness of each step in a solution, facilitating improved reasoning and problem-solving abilities.
## Generation script
The script used to generate this dataset can be found [here](https://github.com/huggingface/trl/blob/main/examples/datasets/prm800k.py).
""")
if __name__ == "__main__":
parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]
data_files = {
"train": "https://github.com/openai/prm800k/raw/refs/heads/main/prm800k/data/phase1_train.jsonl",
"test": "https://github.com/openai/prm800k/raw/refs/heads/main/prm800k/data/phase1_test.jsonl",
}
dataset = load_dataset("json", data_files=data_files)
dataset = dataset.map(
process_batch,
batched=True,
batch_size=10,
remove_columns=[
"labeler",
"timestamp",
"generation",
"is_quality_control_question",
"is_initial_screening_question",
"question",
"label",
],
num_proc=script_args.dataset_num_proc,
)
if script_args.push_to_hub:
dataset.push_to_hub(script_args.repo_id)
model_card.push_to_hub(script_args.repo_id, repo_type="dataset")