Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import re | |
from dataclasses import dataclass, field | |
from itertools import chain | |
from typing import Optional | |
from datasets import load_dataset | |
from huggingface_hub import ModelCard | |
from transformers import HfArgumentParser | |
class ScriptArguments: | |
r""" | |
Arguments for the script. | |
Args: | |
push_to_hub (`bool`, *optional*, defaults to `False`): | |
Whether to push the dataset to the Hugging Face Hub. | |
repo_id (`str`, *optional*, defaults to `"trl-lib/math_shepherd"`): | |
Hugging Face repository ID to push the dataset to. | |
dataset_num_proc (`int` or `None`, *optional*, defaults to `None`): | |
Number of workers to use for dataset processing. | |
""" | |
push_to_hub: bool = field( | |
default=False, | |
metadata={"help": "Whether to push the dataset to the Hugging Face Hub."}, | |
) | |
repo_id: str = field( | |
default="trl-lib/math_shepherd", | |
metadata={"help": "Hugging Face repository ID to push the dataset to."}, | |
) | |
dataset_num_proc: Optional[int] = field( | |
default=None, | |
metadata={"help": "Number of workers to use for dataset processing."}, | |
) | |
def process_example(example): | |
# Replace "ки" with "ⶻ" so that the size of the "input" matches the size of the "label" | |
inputs = example["input"].replace("ки", "ⶻ") | |
# Find the indices of the "ⶻ" characters (that should match with the indexes of the "+" or "-" in the label) | |
indexes = [m.start() for m in re.finditer("ⶻ", inputs)] | |
# Sanity that all indexes are either "+" or "-" | |
assert all(example["label"][idx] in ["+", "-"] for idx in indexes) | |
# Get the labels | |
labels = [example["label"][idx] == "+" for idx in indexes] | |
# Split the inputs into steps (caution, the first step is missing here, it is the prompt) | |
steps = [inputs[i:j] for i, j in zip(chain([0], indexes), chain(indexes, [None]))] | |
# Remove the last step (single ⶻ) | |
steps = steps[:-1] | |
# Get the prompt (first part) and completions (rest) | |
prompt = steps[0] | |
completions = steps[1:] | |
# Remove the heading "ⶻ" and the final whitespace from the completions | |
assert all(completion.startswith("ⶻ") for completion in completions) | |
completions = [completion[1:].strip() for completion in completions] | |
# At this point, we need to retrieve the first step from the prompt. | |
# First, we handle particular cases (annotation error) where we have a first label before the end of the prompt. | |
if prompt.startswith( | |
( | |
"Mr. Rocky", | |
"Parker", | |
"What is the smallest positive", | |
" The Myth", | |
"Let $\\mathbf{a}$", | |
"Find the arithmetic", | |
"Determine an ordered pair", | |
"Determine the ordered pair", | |
"At the Quill and Scroll stationery", | |
"Round to the nearest", | |
r"Calculate $\sqrt{10p}", | |
r"Simplify $\sqrt{28x}", | |
) | |
): | |
# Some spotted datasets errors where there is an annotation in the prompt: we remove it | |
labels = labels[1:] | |
# Then we handle the general case: we get the first step from the prompt by looking for "Step 1:" or "step 1:" or | |
# (less common) "?". | |
elif "Step 1:" in prompt: | |
prompt, first_step = prompt.split("Step 1:") | |
first_step = "Step 1:" + first_step | |
completions = [first_step.strip()] + completions | |
elif "step 1:" in prompt: | |
prompt, first_step = prompt.split("step 1:") | |
first_step = "step 1:" + first_step | |
completions = [first_step.strip()] + completions | |
elif "?" in prompt: | |
prompt, first_step = prompt.split("?") | |
prompt = prompt + "?" | |
completions = [first_step.strip()] + completions | |
else: | |
raise ValueError(f"Prompt can't be processed: {prompt}") | |
# Strip the prompt | |
prompt = prompt.strip() | |
# Sanity check that the length of the completions is the same as the length of the labels | |
assert len(completions) == len(labels) | |
return {"prompt": prompt, "completions": completions, "labels": labels} | |
model_card = ModelCard(""" | |
--- | |
tags: [trl] | |
--- | |
# Math-Shepherd Dataset | |
## Summary | |
The Math-Shepherd dataset is a processed version of [Math-Shepherd dataset](peiyi9979/Math-Shepherd), designed to train models using the [TRL library](https://github.com/huggingface/trl) for stepwise supervision tasks. It provides step-by-step solutions to mathematical problems, enabling models to learn and verify each step of a solution, thereby enhancing their reasoning capabilities. | |
## Data Structure | |
- **Format**: [Standard](https://huggingface.co/docs/trl/main/dataset_formats#standard) | |
- **Type**: [Stepwise supervision](https://huggingface.co/docs/trl/main/dataset_formats#stepwise-supervision) | |
Columns: | |
- `"prompt"`: The problem statement. | |
- `"completions"`: A list of reasoning steps generated to solve the problem. | |
- `"labels"`: A list of booleans or floats indicating the correctness of each corresponding reasoning step. | |
This structure allows models to learn the correctness of each step in a solution, facilitating improved reasoning and problem-solving abilities. | |
## Generation script | |
The script used to generate this dataset can be found [here](https://github.com/huggingface/trl/blob/main/examples/datasets/math_shepherd.py). | |
""") | |
if __name__ == "__main__": | |
parser = HfArgumentParser(ScriptArguments) | |
script_args = parser.parse_args_into_dataclasses()[0] | |
dataset = load_dataset("peiyi9979/Math-Shepherd", split="train") | |
dataset = dataset.map( | |
process_example, | |
remove_columns=["input", "label", "task"], | |
num_proc=script_args.dataset_num_proc, | |
) | |
dataset = dataset.train_test_split(test_size=0.05, seed=42) | |
if script_args.push_to_hub: | |
dataset.push_to_hub(script_args.repo_id) | |
model_card.push_to_hub(script_args.repo_id, repo_type="dataset") | |