trl-sandbox / examples /datasets /hh-rlhf-helpful-base.py
ivangabriele's picture
feat: initialize project
2f5127c verified
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from dataclasses import dataclass, field
from typing import Optional
from datasets import load_dataset
from huggingface_hub import ModelCard
from transformers import HfArgumentParser
@dataclass
class ScriptArguments:
r"""
Arguments for the script.
Args:
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether to push the dataset to the Hugging Face Hub.
repo_id (`str`, *optional*, defaults to `"trl-lib/hh-rlhf-helpful-base"`):
Hugging Face repository ID to push the dataset to.
dataset_num_proc (`int` or `None`, *optional*, defaults to `None`):
Number of workers to use for dataset processing.
"""
push_to_hub: bool = field(
default=False,
metadata={"help": "Whether to push the dataset to the Hugging Face Hub."},
)
repo_id: str = field(
default="trl-lib/hh-rlhf-helpful-base", metadata={"help": "Hugging Face repository ID to push the dataset to."}
)
dataset_num_proc: Optional[int] = field(
default=None, metadata={"help": "Number of workers to use for dataset processing."}
)
def common_start(str1: str, str2: str) -> str:
# Zip the two strings and iterate over them together
common_chars = []
for c1, c2 in zip(str1, str2):
if c1 == c2:
common_chars.append(c1)
else:
break
# Join the common characters and return as a string
return "".join(common_chars)
def extract_dialogue(example: str) -> list[dict[str, str]]:
# Extract the prompt, which corresponds to the common start of the chosen and rejected dialogues
prompt_text = common_start(example["chosen"], example["rejected"])
# The chosen and rejected may share a common start, so we need to remove the common part
if not prompt_text.endswith("\n\nAssistant: "):
prompt_text = prompt_text[: prompt_text.rfind("\n\nAssistant: ")] + "\n\nAssistant: "
# Extract the chosen and rejected lines
chosen_line = example["chosen"][len(prompt_text) :]
rejected_line = example["rejected"][len(prompt_text) :]
# Remove the generation prompt ("\n\nAssistant: ") from the prompt
prompt_text = prompt_text[: -len("\n\nAssistant: ")]
# Split the string at every occurrence of "Human: " or "Assistant: "
prompt_lines = re.split(r"(\n\nAssistant: |\n\nHuman: )", prompt_text)
# Remove the first element as it's empty
prompt_lines = prompt_lines[1:]
prompt = []
for idx in range(0, len(prompt_lines), 2):
role = "user" if prompt_lines[idx] == "\n\nHuman: " else "assistant"
content = prompt_lines[idx + 1]
prompt.append({"role": role, "content": content})
# Remove the prompt from the chosen and rejected dialogues
chosen = [{"role": "assistant", "content": chosen_line}]
rejected = [{"role": "assistant", "content": rejected_line}]
return {"prompt": prompt, "chosen": chosen, "rejected": rejected}
model_card = ModelCard("""
---
tags: [trl]
---
# HH-RLHF-Helpful-Base Dataset
## Summary
The HH-RLHF-Helpful-Base dataset is a processed version of [Anthropic's HH-RLHF](https://huggingface.co/datasets/Anthropic/hh-rlhf) dataset, specifically curated to train models using the [TRL library](https://github.com/huggingface/trl) for preference learning and alignment tasks. It contains pairs of text samples, each labeled as either "chosen" or "rejected," based on human preferences regarding the helpfulness of the responses. This dataset enables models to learn human preferences in generating helpful responses, enhancing their ability to assist users effectively.
## Data Structure
- **Format**: [Conversational](https://huggingface.co/docs/trl/main/dataset_formats#conversational)
- **Type**: [Preference](https://huggingface.co/docs/trl/main/dataset_formats#preference)
Columns:
- `"prompt"`: The user query.
- `"chosen"`: A response deemed helpful by human evaluators.
- `"rejected"`: A response considered less helpful or unhelpful.
This structure allows models to learn to prefer the _chosen_ response over the _rejected_ one, thereby aligning with human preferences in helpfulness.
## Generation script
The script used to generate this dataset can be found [here](https://github.com/huggingface/trl/blob/main/examples/datasets/hh-rlhf-helpful-base.py).
""")
if __name__ == "__main__":
parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]
dataset = load_dataset("Anthropic/hh-rlhf", data_dir="helpful-base")
dataset = dataset.map(extract_dialogue, num_proc=script_args.dataset_num_proc)
if script_args.push_to_hub:
dataset.push_to_hub(script_args.repo_id)
model_card.push_to_hub(script_args.repo_id, repo_type="dataset")