Spaces:
Paused
Paused
File size: 31,146 Bytes
2f5127c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 |
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from collections import defaultdict, deque
from collections.abc import Sequence
from itertools import takewhile
from typing import Any, Callable, Optional, TypeVar, Union
import numpy as np
import pyarrow as pa
import pyarrow.compute as pc
import pyarrow.types
from datasets import Dataset, DatasetDict
from transformers import PreTrainedTokenizerBase
DatasetType = TypeVar("DatasetType", Dataset, DatasetDict)
def is_conversational(example: dict[str, Any]) -> bool:
r"""
Check if the example is in a conversational format.
Args:
example (`dict[str, Any]`):
A single data entry of a dataset. The example can have different keys depending on the
dataset type.
Returns:
`bool`:
`True` if the data is in a conversational format, `False` otherwise.
Examples:
```python
>>> example = {"prompt": [{"role": "user", "content": "What color is the sky?"}]}
>>> is_conversational(example)
True
>>> example = {"prompt": "The sky is"})
>>> is_conversational(example)
False
```
"""
supported_keys = ["prompt", "chosen", "rejected", "completion", "messages"]
example_keys = {key for key in example.keys() if key in supported_keys}
# It must have one of the supported keys
if example_keys:
key = example_keys.pop() # take the first supported key
maybe_messages = example[key]
# It must be a list of messages,
if isinstance(maybe_messages, list):
maybe_message = maybe_messages[0]
# Each message must a list of dictionaries with keys "role" and "content"
if isinstance(maybe_message, dict) and "role" in maybe_message and "content" in maybe_message:
return True
return False
def apply_chat_template(
example: dict[str, list[dict[str, str]]],
tokenizer: PreTrainedTokenizerBase,
tools: Optional[list[Union[dict, Callable]]] = None,
) -> dict[str, str]:
r"""
Apply a chat template to a conversational example along with the schema for a list of functions in `tools`.
For more details, see [`maybe_apply_chat_template`].
"""
# Check that the example has the correct keys
supported_keys = ["prompt", "chosen", "rejected", "completion", "messages", "label"]
example_keys = {key for key in example.keys() if key in supported_keys}
if example_keys not in [
{"messages"}, # language modeling
{"prompt"}, # prompt-only
{"prompt", "completion"}, # prompt-completion
{"prompt", "chosen", "rejected"}, # preference
{"chosen", "rejected"}, # preference with implicit prompt
{"prompt", "completion", "label"}, # unpaired preference
]:
raise KeyError(f"Invalid keys in the example: {example_keys}")
# Apply the chat template to the whole conversation
if "messages" in example:
messages = tokenizer.apply_chat_template(example["messages"], tools=tools, tokenize=False)
# Apply the chat template to the prompt, adding the generation prompt
if "prompt" in example:
last_role = example["prompt"][-1]["role"]
if last_role == "user":
add_generation_prompt = True
continue_final_message = False
elif last_role == "assistant":
add_generation_prompt = False
continue_final_message = True
else:
raise ValueError(f"Invalid role in the last message: {last_role}")
prompt = tokenizer.apply_chat_template(
example["prompt"],
tools=tools,
continue_final_message=continue_final_message,
tokenize=False,
add_generation_prompt=add_generation_prompt,
)
# Apply the chat template to the entire prompt + completion
if "prompt" in example: # explicit prompt and prompt-completion case
if "chosen" in example:
prompt_chosen = tokenizer.apply_chat_template(
example["prompt"] + example["chosen"], tools=tools, tokenize=False
)
# DeepSeek-R1 inserts a <think> token when using `add_generation_prompt`, which can cause discrepancies
# between the prompt alone and the combined prompt+completion. To ensure consistency, we extract the
# common prefix between the two. In most cases, this is a no-op.
prompt = "".join(x for x, _ in takewhile(lambda x: x[0] == x[1], zip(prompt, prompt_chosen)))
chosen = prompt_chosen[len(prompt) :]
if "rejected" in example and "prompt" in example: # explicit prompt
prompt_rejected = tokenizer.apply_chat_template(
example["prompt"] + example["rejected"], tools=tools, tokenize=False
)
# Handle DeepSeek-R1 <think> token, see the above comment for details
prompt = "".join(x for x, _ in takewhile(lambda x: x[0] == x[1], zip(prompt, prompt_rejected)))
rejected = prompt_rejected[len(prompt) :]
if "completion" in example:
prompt_completion = tokenizer.apply_chat_template(
example["prompt"] + example["completion"], tools=tools, tokenize=False
)
# Handle DeepSeek-R1 <think> token, see the above comment for details
prompt = "".join(x for x, _ in takewhile(lambda x: x[0] == x[1], zip(prompt, prompt_completion)))
completion = prompt_completion[len(prompt) :]
else: # implicit prompt case
if "chosen" in example:
chosen = tokenizer.apply_chat_template(example["chosen"], tools=tools, tokenize=False)
if "rejected" in example:
rejected = tokenizer.apply_chat_template(example["rejected"], tools=tools, tokenize=False)
# Extract the completion by removing the prompt part from the prompt-completion string
output = {}
if "messages" in example:
output["text"] = messages
if "prompt" in example:
output["prompt"] = prompt
if "chosen" in example:
output["chosen"] = chosen
if "rejected" in example:
output["rejected"] = rejected
if "completion" in example:
output["completion"] = completion
if "label" in example:
output["label"] = example["label"]
return output
def maybe_apply_chat_template(
example: dict[str, list[dict[str, str]]],
tokenizer: PreTrainedTokenizerBase,
tools: Optional[list[Union[dict, Callable]]] = None,
) -> dict[str, str]:
r"""
If the example is in a conversational format, apply a chat template to it.
Args:
example (`dict[str, list[dict[str, str]]`):
Dictionary representing a single data entry of a conversational dataset. Each data entry can have different
keys depending on the dataset type. The supported dataset types are:
- Language modeling dataset: `"messages"`.
- Prompt-only dataset: `"prompt"`.
- Prompt-completion dataset: `"prompt"` and `"completion"`.
- Preference dataset: `"prompt"`, `"chosen"`, and `"rejected"`.
- Preference dataset with implicit prompt: `"chosen"` and `"rejected"`.
- Unpaired preference dataset: `"prompt"`, `"completion"`, and `"label"`.
For keys `"messages"`, `"prompt"`, `"chosen"`, `"rejected"`, and `"completion"`, the values are lists of
messages, where each message is a dictionary with keys `"role"` and `"content"`.
tokenizer (`PreTrainedTokenizerBase`):
Tokenizer to apply the chat template with.
tools (`list[Union[dict, Callable]]` or `None`, *optional*, defaults to `None`):
A list of tools (callable functions) that will be accessible to the model.
If the template does not support function calling, this argument will have no effect
Returns:
`dict[str, str]`:
Formatted example with the chat template applied.
Notes:
- This function does not alter the keys, except for Language modeling dataset, where `"messages"` is replaced
by `"text"`.
- In case of prompt-only data, if the last role is `"user"`, the generation prompt is added to the prompt.
Else, if the last role is `"assistant"`, the final message is continued.
Example:
```python
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-128k-instruct")
>>> example = {
... "prompt": [{"role": "user", "content": "What color is the sky?"}],
... "completion": [{"role": "assistant", "content": "It is blue."}]
... }
>>> apply_chat_template(example, tokenizer)
{'prompt': '<|user|>\nWhat color is the sky?<|end|>\n<|assistant|>\n', 'completion': 'It is blue.<|end|>\n<|endoftext|>'}
```
"""
if is_conversational(example):
return apply_chat_template(example, tokenizer, tools)
else:
return example
def _unpair_row(examples: list[dict[str, list[dict[str, str]]]]) -> list[dict[str, list[dict[str, str]]]]:
batch_size = len(examples["chosen"])
new_rows = {
"completion": examples["chosen"] + examples["rejected"],
"label": [True] * batch_size + [False] * batch_size,
}
if "prompt" in examples:
new_rows["prompt"] = examples["prompt"] + examples["prompt"]
return new_rows
def unpair_preference_dataset(
dataset: DatasetType, num_proc: Optional[int] = None, desc: Optional[str] = None
) -> DatasetType:
r"""
Unpair a preference dataset.
Args:
dataset (`Dataset` or `DatasetDict`):
Preference dataset to unpair. The dataset must have columns `"chosen"`, `"rejected"` and optionally
`"prompt"`.
num_proc (`int` or `None`, *optional*, defaults to `None`):
Number of processes to use for processing the dataset.
desc (`str` or `None`, *optional*, defaults to `None`):
Meaningful description to be displayed alongside with the progress bar while mapping examples.
Returns:
`Dataset`: The unpaired preference dataset.
Example:
```python
>>> from datasets import Dataset
>>> dataset_dict = {
... "prompt": ["The sky is", "The sun is"]
... "chosen": [" blue.", "in the sky."],
... "rejected": [" green.", " in the sea."]
... }
>>> dataset = Dataset.from_dict(dataset_dict)
>>> dataset = unpair_preference_dataset(dataset)
>>> dataset
Dataset({
features: ['prompt', 'completion', 'label'],
num_rows: 4
})
>>> dataset[0]
{'prompt': 'The sky is', 'completion': ' blue.', 'label': True}
```
"""
return dataset.map(_unpair_row, batched=True, remove_columns=["chosen", "rejected"], num_proc=num_proc, desc=desc)
def maybe_unpair_preference_dataset(
dataset: DatasetType, num_proc: Optional[int] = None, desc: Optional[str] = None
) -> DatasetType:
r"""
Unpair a preference dataset if it is paired.
Args:
dataset (`Dataset` or `DatasetDict`):
Preference dataset to unpair. The dataset must have columns `"chosen"`, `"rejected"` and optionally
`"prompt"`.
num_proc (`int` or `None`, *optional*, defaults to `None`):
Number of processes to use for processing the dataset.
desc (`str` or `None`, *optional*, defaults to `None`):
Meaningful description to be displayed alongside with the progress bar while mapping examples.
Returns:
`Dataset` or `DatasetDict`: The unpaired preference dataset if it was paired, otherwise the original dataset.
Example:
```python
>>> from datasets import Dataset
>>> dataset_dict = {
... "prompt": ["The sky is", "The sun is"]
... "chosen": [" blue.", "in the sky."],
... "rejected": [" green.", " in the sea."]
... }
>>> dataset = Dataset.from_dict(dataset_dict)
>>> dataset = unpair_preference_dataset(dataset)
>>> dataset
Dataset({
features: ['prompt', 'completion', 'label'],
num_rows: 4
})
>>> dataset[0]
{'prompt': 'The sky is', 'completion': ' blue.', 'label': True}
```
"""
if isinstance(dataset, DatasetDict):
column_names = dataset[list(dataset.keys())[0]].column_names
else:
column_names = dataset.column_names
if "chosen" in column_names and "rejected" in column_names:
return unpair_preference_dataset(dataset, num_proc=num_proc, desc=desc)
else:
return dataset
def extract_prompt(example: dict[str, Sequence]) -> dict[str, Sequence]:
r"""
Extracts the shared prompt from a preference data example, where the prompt is implicit within both
the chosen and rejected completions.
For more details, see [`maybe_extract_prompt`].
"""
for idx in range(min(len(example["chosen"]), len(example["rejected"]))):
if example["chosen"][idx] != example["rejected"][idx]:
if example["chosen"][idx - 1] == " ": # remove space before the prompt
idx -= 1
break
return {
"prompt": example["chosen"][:idx],
"chosen": example["chosen"][idx:],
"rejected": example["rejected"][idx:],
}
def maybe_extract_prompt(example: dict[str, list]) -> dict[str, list]:
r"""
Extracts the shared prompt from a preference data example, where the prompt is implicit within both
the chosen and rejected completions.
If the example already contains a `"prompt"` key, the function returns the example as is. Else, the function
identifies the longest common sequence (prefix) of conversation turns between the "chosen" and "rejected"
completions and extracts this as the prompt. It then removes this prompt from the respective "chosen" and
"rejected" completions.
Args:
example (`dict[str, list]`):
A dictionary representing a single data entry in the preference dataset. It must contain the keys
`"chosen"` and `"rejected"`, where each value is either conversational or standard (`str`).
Returns:
`dict[str, list]`: A dictionary containing:
- `"prompt"`: The longest common prefix between the "chosen" and "rejected" completions.
- `"chosen"`: The remainder of the "chosen" completion, with the prompt removed.
- `"rejected"`: The remainder of the "rejected" completion, with the prompt removed.
Examples:
```python
>>> example = {
... "chosen": [
... {"role": "user", "content": "What color is the sky?"},
... {"role": "assistant", "content": "It is blue."}
... ],
... "rejected": [
... {"role": "user", "content": "What color is the sky?"},
... {"role": "assistant", "content": "It is green."}
... ]
... }
>>> extract_prompt(example)
{'prompt': [{'role': 'user', 'content': 'What color is the sky?'}],
'chosen': [{'role': 'assistant', 'content': 'It is blue.'}],
'rejected': [{'role': 'assistant', 'content': 'It is green.'}]}
```
Or, with the `map` method of `datasets.Dataset`:
```python
>>> from trl import extract_prompt
>>> from datasets import Dataset
>>> dataset_dict = {
... "chosen": [
... [
... {"role": "user", "content": "What color is the sky?"},
... {"role": "assistant", "content": "It is blue."},
... ],
... [
... {"role": "user", "content": "Where is the sun?"},
... {"role": "assistant", "content": "In the sky."},
... ],
... ],
... "rejected": [
... [
... {"role": "user", "content": "What color is the sky?"},
... {"role": "assistant", "content": "It is green."},
... ],
... [
... {"role": "user", "content": "Where is the sun?"},
... {"role": "assistant", "content": "In the sea."},
... ],
... ],
... }
>>> dataset = Dataset.from_dict(dataset_dict)
>>> dataset = dataset.map(extract_prompt)
>>> dataset[0]
{'prompt': [{'role': 'user', 'content': 'What color is the sky?'}],
'chosen': [{'role': 'assistant', 'content': 'It is blue.'}],
'rejected': [{'role': 'assistant', 'content': 'It is green.'}]}
```
"""
# Some dataset add a `"prompt"` column, even though the prompt is implicit and included in the "chosen" and
# "rejected" completions. E.g.:
# {"prompt": "What color is the sky?",
# "chosen": [{"role": "user", "content": "What color is the sky?"}, {"role": "assistant", "content": "It is blue."}],
# "rejected": [{"role": "user", "content": "What color is the sky?"}, {"role": "assistant", "content": "It is green."}]}
# That's why we check if the prompt is also conversational before deciding not to extract it.
if "chosen" not in example or "rejected" not in example: # not a preference example
return example
if "prompt" in example:
# Both conversational or both non-conversational
chosen_conv = is_conversational({"chosen": example["chosen"]})
prompt_conv = is_conversational({"prompt": example["prompt"]})
if (chosen_conv and prompt_conv) or (not chosen_conv and not prompt_conv):
return example
return extract_prompt({"chosen": example["chosen"], "rejected": example["rejected"]})
def pack_examples(examples: dict[str, list[list]], seq_length: int) -> dict[str, list[list]]:
"""
Pack examples into chunks of size `seq_length`.
Args:
examples (`dict[str, list[list]]`):
Dictionary of examples with keys as strings and values as lists of lists.
seq_length (`int`):
Maximum sequence length.
Returns:
`dict[str, list[list]]`: Dictionary of examples with keys as strings and values as lists of lists.
Example:
```python
>>> from trl import pack_examples
>>> examples = {
... "input_ids": [[1, 2, 3], [4, 5, 6, 7], [8]],
... "attention_mask": [[0, 1, 1], [0, 0, 1, 1], [1]],
... }
>>> pack_examples(examples, seq_length=5)
{'input_ids': [[1, 2, 3, 4, 5], [6, 7, 8]], 'attention_mask': [[0, 1, 1, 0, 0], [1, 1, 1]]}
>>> pack_examples(examples, seq_length=2)
{'input_ids': [[1, 2], [3, 4], [5, 6], [7, 8]], 'attention_mask': [[0, 1], [1, 0], [0, 1], [1, 1]]}
```
"""
warnings.warn(
"`pack_examples` is deprecated and will be removed in version 0.20.0. Use `pack_dataset` with a dataset "
"instead.",
DeprecationWarning,
)
# Join all the values into a single list
examples = {k: sum(v, []) for k, v in examples.items()}
# Split the values into chunks of size seq_length
examples = {k: [v[i : i + seq_length] for i in range(0, len(v), seq_length)] for k, v in examples.items()}
return examples
class _SegmentTree:
"""
A segment tree data structure that, when initialized as `_SegmentTree(maxval)`, efficiently finds the next larger value
for a given input within the range [1, maxval].
See [Fewer Truncations Improve Language Modeling](https://arxiv.org/abs/2404.10830) for more details.
"""
def __init__(self, maxval: int):
self.maxval = maxval
self.tree = [0] * (2 * maxval)
def add(self, val):
assert 0 < val <= self.maxval
i = self.maxval + val - 1
self.tree[i] = val
while i > 1:
i >>= 1
left, right = self.tree[i << 1], self.tree[(i << 1) + 1]
# Compare the values using if-else otherwise repeated calls to `builtins.max` become the bottleneck
self.tree[i] = left if left >= right else right
def remove(self, val):
assert 0 < val <= self.maxval
i = self.maxval + val - 1
self.tree[i] = 0
while i > 1:
i >>= 1
left, right = self.tree[i << 1], self.tree[(i << 1) + 1]
# Compare the values using if-else otherwise repeated calls to `builtins.max` become the bottleneck
self.tree[i] = left if left >= right else right
def search(self, val):
assert 0 < val <= self.maxval
i = 1
while i < self.maxval:
if self.tree[i << 1] >= val:
i = i << 1
else:
i = (i << 1) + 1
return self.tree[i]
def _pack_ffd(examples: pa.Table, seq_length: int) -> pa.Table:
"""Pack sequences in a pyarrow Table using First Fit Decreasing strategy."""
# Add position_ids to the examples
input_ids = examples["input_ids"]
position_ids_python = [list(range(len(sequence))) for sequence in input_ids.to_pylist()]
position_ids_array = pa.array(position_ids_python, type=examples["input_ids"].type)
examples = examples.append_column("position_ids", position_ids_array)
columns = []
list_column_idx = None
for idx, column in enumerate(examples.columns):
if pyarrow.types.is_list(column.type) or pyarrow.types.is_large_list(column.type):
column = pc.list_slice(column, 0, seq_length)
if list_column_idx is None:
list_column_idx = idx
columns.append(column)
examples = pa.Table.from_arrays(columns, names=examples.column_names)
ids = np.arange(len(examples))
assert list_column_idx is not None
lengths = pc.make_struct(pc.list_value_length(examples[list_column_idx]).combine_chunks(), ids)
lengths = lengths.sort("descending", by=0)
segment_tree = _SegmentTree(seq_length)
segment_tree.add(seq_length) # the max, `seq_length` bin is always available
space_to_bin = defaultdict(deque)
# Bin is represented as a dict (of example ids and sum of their lengths) to allow in-place updates
bins: list[dict] = []
for length, idx in zip(lengths.field(0).to_numpy(), lengths.field(1).to_numpy()):
space = segment_tree.search(length)
if space < seq_length:
bin = space_to_bin[space].popleft()
else:
bin = {"ids": [], "length": 0}
bins.append(bin)
bin["ids"].append(idx)
bin["length"] += length
if space < seq_length and not space_to_bin[space]:
segment_tree.remove(space)
space = space - length
space_to_bin[space].append(bin)
if space > 0:
segment_tree.add(space)
examples = pc.take(examples, [id_ for bin in bins for id_ in bin["ids"]])
offsets = np.array([0] + [bin["length"] for bin in bins])
offsets = np.cumsum(offsets)
columns = []
for column in examples.columns:
assert len(column.chunks) == 1 # `pc.take` returns a ChunkedArray with a single chunk
column = column.chunks[0]
if pa.types.is_list(column.type) or pa.types.is_large_list(column.type):
dtype = column.offsets.type.to_pandas_dtype()
column = type(column).from_arrays(offsets.astype(dtype), column.values)
columns.append(column)
return pa.Table.from_arrays(columns, names=examples.column_names)
def _pack_wrapped(examples: pa.Table, seq_length: int) -> pa.Table:
"""Pack sequences in a pyarrow Table using a wrapped strategy."""
columns = []
for column in examples.columns:
if pyarrow.types.is_list(column.type) or pyarrow.types.is_large_list(column.type):
if isinstance(column, pa.ChunkedArray):
column = column.combine_chunks()
offsets, values = column.offsets, column.values
values = values[offsets[0].as_py() : offsets[-1].as_py()]
num_elements = len(values)
dtype = offsets.type.to_pandas_dtype() # np.int32 or np.int64
offsets = np.arange(0, num_elements, seq_length, dtype=dtype)
offsets = np.concatenate((offsets, [num_elements]))
column = type(column).from_arrays(offsets, values)
columns.append(column)
return pa.Table.from_arrays(columns, names=examples.column_names)
def pack_dataset(
dataset: DatasetType, seq_length: int, strategy: str = "ffd", map_kwargs: Optional[dict[str, Any]] = None
) -> DatasetType:
r"""
Pack sequences in a dataset into chunks of size `seq_length`.
Args:
dataset (`Dataset` or `DatasetDict`):
Dataset to pack
seq_length (`int`):
Target sequence length to pack to.
strategy (`str`, *optional*, defaults to `"ffd"`):
Packing strategy to use. Can be either:
- `"ffd"` (First Fit Decreasing): Slower but preserves sequence boundaries. Sequences are never cut in the
middle.
- `"wrapped"`: Faster but more aggressive. Ignores sequence boundaries and will cut sequences in the middle
to completely fill each packed sequence with data.
map_kwargs (`dict` or `None`, *optional*, defaults to `None`):
Additional keyword arguments to pass to the dataset's map method when packing examples.
Returns:
`Dataset` or `DatasetDict`: The dataset with packed sequences. The number of examples may
decrease as sequences are combined.
Example:
```python
>>> from datasets import Dataset
>>> from trl import pack_dataset
>>> examples = {
... "input_ids": [[1, 2, 3], [4, 5], [6, 7, 8], [9]],
... "attention_mask": [[1, 1, 0], [1, 0], [1, 0, 0], [1]]
... }
>>> dataset = Dataset.from_dict(examples)
>>> packed_dataset = pack_dataset(dataset, seq_length=4, strategy="ffd")
>>> packed_dataset[:]
{'input_ids': [[1, 2, 3, 9], [6, 7, 8, 4, 5]],
'attention_mask': [[1, 1, 0, 1], [1, 0, 0, 1, 0]]}
```
"""
if map_kwargs is None:
map_kwargs = {}
# Fast packing with pyarrow
dataset = dataset.with_format("arrow")
if strategy == "ffd":
dataset = dataset.map(_pack_ffd, batched=True, fn_kwargs={"seq_length": seq_length}, **map_kwargs)
elif strategy == "wrapped":
dataset = dataset.map(_pack_wrapped, batched=True, fn_kwargs={"seq_length": seq_length}, **map_kwargs)
else:
raise ValueError(f"Invalid packing strategy: {strategy}. Use 'ffd' or 'wrapped'.")
dataset = dataset.with_format(None)
return dataset
def truncate_dataset(
dataset: DatasetType, max_length: int, map_kwargs: Optional[dict[str, Any]] = None
) -> DatasetType:
r"""
Truncate sequences in a dataset to a specifed `max_length`.
Args:
dataset (`Dataset` or `DatasetDict`):
Dataset to truncate.
seq_length (`int`):
Maximum sequence length to truncate to.
map_kwargs (`dict` or `None`, *optional*, defaults to `None`):
Additional keyword arguments to pass to the dataset's map method when truncating examples.
Returns:
`Dataset` or `DatasetDict`: The dataset with truncated sequences.
Example:
```python
>>> from datasets import Dataset
>>> examples = {
... "input_ids": [[1, 2, 3], [4, 5, 6, 7], [8]],
... "attention_mask": [[0, 1, 1], [0, 0, 1, 1], [1]],
... }
>>> dataset = Dataset.from_dict(examples)
>>> truncated_dataset = truncate_dataset(dataset, max_length=2)
>>> truncated_dataset[:]
{'input_ids': [[1, 2], [4, 5], [8]],
'attention_mask': [[0, 1], [0, 0], [1]]}
```
"""
if map_kwargs is None:
map_kwargs = {}
if isinstance(dataset, Dataset):
# Fast truncation with pyarrow
def truncate(examples):
truncated_columns = []
for column in examples.columns:
if pyarrow.types.is_list(column.type) or pyarrow.types.is_large_list(column.type):
column = pc.list_slice(column, 0, max_length)
truncated_columns.append(column)
return pa.Table.from_arrays(truncated_columns, names=examples.column_names)
dataset = dataset.with_format("arrow")
dataset = dataset.map(truncate, batched=True, **map_kwargs)
dataset = dataset.with_format(None)
else:
def truncate(examples):
truncated_examples = {}
for key, column in examples.items():
if column and isinstance(column[0], list):
column = [val[:max_length] for val in column]
truncated_examples[key] = column
return truncated_examples
dataset = dataset.map(
truncate,
batched=True,
**map_kwargs,
)
return dataset
def maybe_convert_to_chatml(example: dict[str, list]) -> dict[str, list]:
"""
Convert a conversational dataset with fields `from` and `value` to ChatML format.
This function modifies conversational data to align with OpenAI's ChatML format:
- Replaces the key `"from"` with `"role"` in message dictionaries.
- Replaces the key `"value"` with `"content"` in message dictionaries.
- Renames `"conversations"` to `"messages"` for consistency with ChatML.
Args:
example (`dict[str, list]`):
A single data entry containing a list of messages.
Returns:
`dict[str, list]`:
Example reformatted to ChatML style.
Example:
```python
>>> from trl import maybe_convert_to_chatml
>>> example = {
... "conversations": [
... {"from": "user", "value": "What color is the sky?"},
... {"from": "assistant", "value": "It is blue."}
... ]
... }
>>> maybe_convert_to_chatml(example)
{'messages': [{'role': 'user', 'content': 'What color is the sky?'},
{'role': 'assistant', 'content': 'It is blue.'}]}
```
"""
# List of possible keys containing message lists
for key in ["prompt", "completion", "chosen", "rejected", "messages", "conversations"]:
if key in example and isinstance(example[key], list):
messages = example[key]
for message in messages:
if isinstance(message, dict):
if "from" in message:
message["role"] = message.pop("from")
if "value" in message:
message["content"] = message.pop("value")
# Rename "conversations" to "messages"
if "conversations" in example:
example["messages"] = example.pop("conversations")
return example
|