File size: 31,146 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import warnings
from collections import defaultdict, deque
from collections.abc import Sequence
from itertools import takewhile
from typing import Any, Callable, Optional, TypeVar, Union

import numpy as np
import pyarrow as pa
import pyarrow.compute as pc
import pyarrow.types
from datasets import Dataset, DatasetDict
from transformers import PreTrainedTokenizerBase


DatasetType = TypeVar("DatasetType", Dataset, DatasetDict)


def is_conversational(example: dict[str, Any]) -> bool:
    r"""
    Check if the example is in a conversational format.

    Args:
        example (`dict[str, Any]`):
            A single data entry of a dataset. The example can have different keys depending on the
            dataset type.

    Returns:
        `bool`:
            `True` if the data is in a conversational format, `False` otherwise.

    Examples:

    ```python
    >>> example = {"prompt": [{"role": "user", "content": "What color is the sky?"}]}
    >>> is_conversational(example)
    True
    >>> example = {"prompt": "The sky is"})
    >>> is_conversational(example)
    False
    ```
    """
    supported_keys = ["prompt", "chosen", "rejected", "completion", "messages"]
    example_keys = {key for key in example.keys() if key in supported_keys}

    # It must have one of the supported keys
    if example_keys:
        key = example_keys.pop()  # take the first supported key
        maybe_messages = example[key]
        # It must be a list of messages,
        if isinstance(maybe_messages, list):
            maybe_message = maybe_messages[0]
            # Each message must a list of dictionaries with keys "role" and "content"
            if isinstance(maybe_message, dict) and "role" in maybe_message and "content" in maybe_message:
                return True

    return False


def apply_chat_template(
    example: dict[str, list[dict[str, str]]],
    tokenizer: PreTrainedTokenizerBase,
    tools: Optional[list[Union[dict, Callable]]] = None,
) -> dict[str, str]:
    r"""
    Apply a chat template to a conversational example along with the schema for a list of functions in `tools`.

    For more details, see [`maybe_apply_chat_template`].
    """
    # Check that the example has the correct keys
    supported_keys = ["prompt", "chosen", "rejected", "completion", "messages", "label"]
    example_keys = {key for key in example.keys() if key in supported_keys}
    if example_keys not in [
        {"messages"},  # language modeling
        {"prompt"},  # prompt-only
        {"prompt", "completion"},  # prompt-completion
        {"prompt", "chosen", "rejected"},  # preference
        {"chosen", "rejected"},  # preference with implicit prompt
        {"prompt", "completion", "label"},  # unpaired preference
    ]:
        raise KeyError(f"Invalid keys in the example: {example_keys}")

    # Apply the chat template to the whole conversation
    if "messages" in example:
        messages = tokenizer.apply_chat_template(example["messages"], tools=tools, tokenize=False)

    # Apply the chat template to the prompt, adding the generation prompt
    if "prompt" in example:
        last_role = example["prompt"][-1]["role"]
        if last_role == "user":
            add_generation_prompt = True
            continue_final_message = False
        elif last_role == "assistant":
            add_generation_prompt = False
            continue_final_message = True
        else:
            raise ValueError(f"Invalid role in the last message: {last_role}")
        prompt = tokenizer.apply_chat_template(
            example["prompt"],
            tools=tools,
            continue_final_message=continue_final_message,
            tokenize=False,
            add_generation_prompt=add_generation_prompt,
        )

    # Apply the chat template to the entire prompt + completion
    if "prompt" in example:  # explicit prompt and prompt-completion case
        if "chosen" in example:
            prompt_chosen = tokenizer.apply_chat_template(
                example["prompt"] + example["chosen"], tools=tools, tokenize=False
            )
            # DeepSeek-R1 inserts a <think> token when using `add_generation_prompt`, which can cause discrepancies
            # between the prompt alone and the combined prompt+completion. To ensure consistency, we extract the
            # common prefix between the two. In most cases, this is a no-op.
            prompt = "".join(x for x, _ in takewhile(lambda x: x[0] == x[1], zip(prompt, prompt_chosen)))

            chosen = prompt_chosen[len(prompt) :]
        if "rejected" in example and "prompt" in example:  # explicit prompt
            prompt_rejected = tokenizer.apply_chat_template(
                example["prompt"] + example["rejected"], tools=tools, tokenize=False
            )
            # Handle DeepSeek-R1 <think> token, see the above comment for details
            prompt = "".join(x for x, _ in takewhile(lambda x: x[0] == x[1], zip(prompt, prompt_rejected)))
            rejected = prompt_rejected[len(prompt) :]
        if "completion" in example:
            prompt_completion = tokenizer.apply_chat_template(
                example["prompt"] + example["completion"], tools=tools, tokenize=False
            )
            # Handle DeepSeek-R1 <think> token, see the above comment for details
            prompt = "".join(x for x, _ in takewhile(lambda x: x[0] == x[1], zip(prompt, prompt_completion)))
            completion = prompt_completion[len(prompt) :]
    else:  # implicit prompt case
        if "chosen" in example:
            chosen = tokenizer.apply_chat_template(example["chosen"], tools=tools, tokenize=False)
        if "rejected" in example:
            rejected = tokenizer.apply_chat_template(example["rejected"], tools=tools, tokenize=False)

    # Extract the completion by removing the prompt part from the prompt-completion string
    output = {}
    if "messages" in example:
        output["text"] = messages
    if "prompt" in example:
        output["prompt"] = prompt
    if "chosen" in example:
        output["chosen"] = chosen
    if "rejected" in example:
        output["rejected"] = rejected
    if "completion" in example:
        output["completion"] = completion
    if "label" in example:
        output["label"] = example["label"]

    return output


def maybe_apply_chat_template(
    example: dict[str, list[dict[str, str]]],
    tokenizer: PreTrainedTokenizerBase,
    tools: Optional[list[Union[dict, Callable]]] = None,
) -> dict[str, str]:
    r"""
    If the example is in a conversational format, apply a chat template to it.

    Args:
        example (`dict[str, list[dict[str, str]]`):
            Dictionary representing a single data entry of a conversational dataset. Each data entry can have different
            keys depending on the dataset type. The supported dataset types are:

                - Language modeling dataset: `"messages"`.
                - Prompt-only dataset: `"prompt"`.
                - Prompt-completion dataset: `"prompt"` and `"completion"`.
                - Preference dataset: `"prompt"`, `"chosen"`, and `"rejected"`.
                - Preference dataset with implicit prompt: `"chosen"` and `"rejected"`.
                - Unpaired preference dataset: `"prompt"`, `"completion"`, and `"label"`.

            For keys `"messages"`, `"prompt"`, `"chosen"`, `"rejected"`, and `"completion"`, the values are lists of
            messages, where each message is a dictionary with keys `"role"` and `"content"`.
        tokenizer (`PreTrainedTokenizerBase`):
            Tokenizer to apply the chat template with.
        tools (`list[Union[dict, Callable]]` or `None`, *optional*, defaults to `None`):
            A list of tools (callable functions) that will be accessible to the model.
            If the template does not support function calling, this argument will have no effect

    Returns:
        `dict[str, str]`:
            Formatted example with the chat template applied.

    Notes:
        - This function does not alter the keys, except for Language modeling dataset, where `"messages"` is replaced
        by `"text"`.

        - In case of prompt-only data, if the last role is `"user"`, the generation prompt is added to the prompt.
        Else, if the last role is `"assistant"`, the final message is continued.

    Example:

    ```python
    >>> from transformers import AutoTokenizer
    >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-128k-instruct")
    >>> example = {
    ...     "prompt": [{"role": "user", "content": "What color is the sky?"}],
    ...     "completion": [{"role": "assistant", "content": "It is blue."}]
    ... }
    >>> apply_chat_template(example, tokenizer)
    {'prompt': '<|user|>\nWhat color is the sky?<|end|>\n<|assistant|>\n', 'completion': 'It is blue.<|end|>\n<|endoftext|>'}
    ```
    """
    if is_conversational(example):
        return apply_chat_template(example, tokenizer, tools)
    else:
        return example


def _unpair_row(examples: list[dict[str, list[dict[str, str]]]]) -> list[dict[str, list[dict[str, str]]]]:
    batch_size = len(examples["chosen"])
    new_rows = {
        "completion": examples["chosen"] + examples["rejected"],
        "label": [True] * batch_size + [False] * batch_size,
    }
    if "prompt" in examples:
        new_rows["prompt"] = examples["prompt"] + examples["prompt"]
    return new_rows


def unpair_preference_dataset(
    dataset: DatasetType, num_proc: Optional[int] = None, desc: Optional[str] = None
) -> DatasetType:
    r"""
    Unpair a preference dataset.

    Args:
        dataset (`Dataset` or `DatasetDict`):
            Preference dataset to unpair. The dataset must have columns `"chosen"`, `"rejected"` and optionally
            `"prompt"`.
        num_proc (`int` or `None`, *optional*, defaults to `None`):
            Number of processes to use for processing the dataset.
        desc (`str` or `None`, *optional*, defaults to `None`):
            Meaningful description to be displayed alongside with the progress bar while mapping examples.

    Returns:
        `Dataset`: The unpaired preference dataset.

    Example:

    ```python
    >>> from datasets import Dataset
    >>> dataset_dict = {
    ...     "prompt": ["The sky is", "The sun is"]
    ...     "chosen": [" blue.", "in the sky."],
    ...     "rejected": [" green.", " in the sea."]
    ... }
    >>> dataset = Dataset.from_dict(dataset_dict)
    >>> dataset = unpair_preference_dataset(dataset)
    >>> dataset
    Dataset({
        features: ['prompt', 'completion', 'label'],
        num_rows: 4
    })
    >>> dataset[0]
    {'prompt': 'The sky is', 'completion': ' blue.', 'label': True}
    ```
    """
    return dataset.map(_unpair_row, batched=True, remove_columns=["chosen", "rejected"], num_proc=num_proc, desc=desc)


def maybe_unpair_preference_dataset(
    dataset: DatasetType, num_proc: Optional[int] = None, desc: Optional[str] = None
) -> DatasetType:
    r"""
    Unpair a preference dataset if it is paired.

    Args:
        dataset (`Dataset` or `DatasetDict`):
            Preference dataset to unpair. The dataset must have columns `"chosen"`, `"rejected"` and optionally
            `"prompt"`.
        num_proc (`int` or `None`, *optional*, defaults to `None`):
            Number of processes to use for processing the dataset.
        desc (`str` or `None`, *optional*, defaults to `None`):
            Meaningful description to be displayed alongside with the progress bar while mapping examples.

    Returns:
        `Dataset` or `DatasetDict`: The unpaired preference dataset if it was paired, otherwise the original dataset.

    Example:

    ```python
    >>> from datasets import Dataset
    >>> dataset_dict = {
    ...     "prompt": ["The sky is", "The sun is"]
    ...     "chosen": [" blue.", "in the sky."],
    ...     "rejected": [" green.", " in the sea."]
    ... }
    >>> dataset = Dataset.from_dict(dataset_dict)
    >>> dataset = unpair_preference_dataset(dataset)
    >>> dataset
    Dataset({
        features: ['prompt', 'completion', 'label'],
        num_rows: 4
    })
    >>> dataset[0]
    {'prompt': 'The sky is', 'completion': ' blue.', 'label': True}
    ```
    """
    if isinstance(dataset, DatasetDict):
        column_names = dataset[list(dataset.keys())[0]].column_names
    else:
        column_names = dataset.column_names
    if "chosen" in column_names and "rejected" in column_names:
        return unpair_preference_dataset(dataset, num_proc=num_proc, desc=desc)
    else:
        return dataset


def extract_prompt(example: dict[str, Sequence]) -> dict[str, Sequence]:
    r"""
    Extracts the shared prompt from a preference data example, where the prompt is implicit within both
    the chosen and rejected completions.

    For more details, see [`maybe_extract_prompt`].
    """
    for idx in range(min(len(example["chosen"]), len(example["rejected"]))):
        if example["chosen"][idx] != example["rejected"][idx]:
            if example["chosen"][idx - 1] == " ":  # remove space before the prompt
                idx -= 1
            break
    return {
        "prompt": example["chosen"][:idx],
        "chosen": example["chosen"][idx:],
        "rejected": example["rejected"][idx:],
    }


def maybe_extract_prompt(example: dict[str, list]) -> dict[str, list]:
    r"""
    Extracts the shared prompt from a preference data example, where the prompt is implicit within both
    the chosen and rejected completions.

    If the example already contains a `"prompt"` key, the function returns the example as is. Else, the function
    identifies the longest common sequence (prefix) of conversation turns between the "chosen" and "rejected"
    completions and extracts this as the prompt. It then removes this prompt from the respective "chosen" and
    "rejected" completions.

    Args:
        example (`dict[str, list]`):
            A dictionary representing a single data entry in the preference dataset. It must contain the keys
            `"chosen"` and `"rejected"`, where each value is either conversational or standard (`str`).

    Returns:
        `dict[str, list]`: A dictionary containing:
            - `"prompt"`: The longest common prefix between the "chosen" and "rejected" completions.
            - `"chosen"`: The remainder of the "chosen" completion, with the prompt removed.
            - `"rejected"`: The remainder of the "rejected" completion, with the prompt removed.

    Examples:

    ```python
    >>> example = {
    ...     "chosen": [
    ...         {"role": "user", "content": "What color is the sky?"},
    ...         {"role": "assistant", "content": "It is blue."}
    ...     ],
    ...     "rejected": [
    ...         {"role": "user", "content": "What color is the sky?"},
    ...         {"role": "assistant", "content": "It is green."}
    ...     ]
    ... }
    >>> extract_prompt(example)
    {'prompt': [{'role': 'user', 'content': 'What color is the sky?'}],
     'chosen': [{'role': 'assistant', 'content': 'It is blue.'}],
     'rejected': [{'role': 'assistant', 'content': 'It is green.'}]}
    ```

    Or, with the `map` method of `datasets.Dataset`:

    ```python
    >>> from trl import extract_prompt
    >>> from datasets import Dataset
    >>> dataset_dict = {
    ...     "chosen": [
    ...         [
    ...             {"role": "user", "content": "What color is the sky?"},
    ...             {"role": "assistant", "content": "It is blue."},
    ...         ],
    ...         [
    ...             {"role": "user", "content": "Where is the sun?"},
    ...             {"role": "assistant", "content": "In the sky."},
    ...         ],
    ...     ],
    ...     "rejected": [
    ...         [
    ...             {"role": "user", "content": "What color is the sky?"},
    ...             {"role": "assistant", "content": "It is green."},
    ...         ],
    ...         [
    ...             {"role": "user", "content": "Where is the sun?"},
    ...             {"role": "assistant", "content": "In the sea."},
    ...         ],
    ...     ],
    ... }
    >>> dataset = Dataset.from_dict(dataset_dict)
    >>> dataset = dataset.map(extract_prompt)
    >>> dataset[0]
    {'prompt': [{'role': 'user', 'content': 'What color is the sky?'}],
     'chosen': [{'role': 'assistant', 'content': 'It is blue.'}],
     'rejected': [{'role': 'assistant', 'content': 'It is green.'}]}
    ```
    """
    # Some dataset add a `"prompt"` column, even though the prompt is implicit and included in the "chosen" and
    # "rejected" completions. E.g.:
    # {"prompt": "What color is the sky?",
    #  "chosen": [{"role": "user", "content": "What color is the sky?"}, {"role": "assistant", "content": "It is blue."}],
    #  "rejected": [{"role": "user", "content": "What color is the sky?"}, {"role": "assistant", "content": "It is green."}]}
    # That's why we check if the prompt is also conversational before deciding not to extract it.
    if "chosen" not in example or "rejected" not in example:  # not a preference example
        return example
    if "prompt" in example:
        # Both conversational or both non-conversational
        chosen_conv = is_conversational({"chosen": example["chosen"]})
        prompt_conv = is_conversational({"prompt": example["prompt"]})
        if (chosen_conv and prompt_conv) or (not chosen_conv and not prompt_conv):
            return example
    return extract_prompt({"chosen": example["chosen"], "rejected": example["rejected"]})


def pack_examples(examples: dict[str, list[list]], seq_length: int) -> dict[str, list[list]]:
    """
    Pack examples into chunks of size `seq_length`.

    Args:
        examples (`dict[str, list[list]]`):
            Dictionary of examples with keys as strings and values as lists of lists.
        seq_length (`int`):
            Maximum sequence length.

    Returns:
        `dict[str, list[list]]`: Dictionary of examples with keys as strings and values as lists of lists.

    Example:

    ```python
    >>> from trl import pack_examples
    >>> examples = {
    ...     "input_ids": [[1, 2, 3], [4, 5, 6, 7], [8]],
    ...     "attention_mask": [[0, 1, 1], [0, 0, 1, 1], [1]],
    ... }
    >>> pack_examples(examples, seq_length=5)
    {'input_ids': [[1, 2, 3, 4, 5], [6, 7, 8]], 'attention_mask': [[0, 1, 1, 0, 0], [1, 1, 1]]}
    >>> pack_examples(examples, seq_length=2)
    {'input_ids': [[1, 2], [3, 4], [5, 6], [7, 8]], 'attention_mask': [[0, 1], [1, 0], [0, 1], [1, 1]]}
    ```
    """
    warnings.warn(
        "`pack_examples` is deprecated and will be removed in version 0.20.0. Use `pack_dataset` with a dataset "
        "instead.",
        DeprecationWarning,
    )
    # Join  all the values into a single list
    examples = {k: sum(v, []) for k, v in examples.items()}
    # Split the values into chunks of size seq_length
    examples = {k: [v[i : i + seq_length] for i in range(0, len(v), seq_length)] for k, v in examples.items()}
    return examples


class _SegmentTree:
    """
    A segment tree data structure that, when initialized as `_SegmentTree(maxval)`, efficiently finds the next larger value
    for a given input within the range [1, maxval].

    See [Fewer Truncations Improve Language Modeling](https://arxiv.org/abs/2404.10830) for more details.
    """

    def __init__(self, maxval: int):
        self.maxval = maxval
        self.tree = [0] * (2 * maxval)

    def add(self, val):
        assert 0 < val <= self.maxval
        i = self.maxval + val - 1
        self.tree[i] = val
        while i > 1:
            i >>= 1
            left, right = self.tree[i << 1], self.tree[(i << 1) + 1]
            # Compare the values using if-else otherwise repeated calls to `builtins.max` become the bottleneck
            self.tree[i] = left if left >= right else right

    def remove(self, val):
        assert 0 < val <= self.maxval
        i = self.maxval + val - 1
        self.tree[i] = 0
        while i > 1:
            i >>= 1
            left, right = self.tree[i << 1], self.tree[(i << 1) + 1]
            # Compare the values using if-else otherwise repeated calls to `builtins.max` become the bottleneck
            self.tree[i] = left if left >= right else right

    def search(self, val):
        assert 0 < val <= self.maxval
        i = 1
        while i < self.maxval:
            if self.tree[i << 1] >= val:
                i = i << 1
            else:
                i = (i << 1) + 1
        return self.tree[i]


def _pack_ffd(examples: pa.Table, seq_length: int) -> pa.Table:
    """Pack sequences in a pyarrow Table using First Fit Decreasing strategy."""
    # Add position_ids to the examples
    input_ids = examples["input_ids"]
    position_ids_python = [list(range(len(sequence))) for sequence in input_ids.to_pylist()]
    position_ids_array = pa.array(position_ids_python, type=examples["input_ids"].type)
    examples = examples.append_column("position_ids", position_ids_array)

    columns = []
    list_column_idx = None
    for idx, column in enumerate(examples.columns):
        if pyarrow.types.is_list(column.type) or pyarrow.types.is_large_list(column.type):
            column = pc.list_slice(column, 0, seq_length)
            if list_column_idx is None:
                list_column_idx = idx
        columns.append(column)
    examples = pa.Table.from_arrays(columns, names=examples.column_names)

    ids = np.arange(len(examples))
    assert list_column_idx is not None
    lengths = pc.make_struct(pc.list_value_length(examples[list_column_idx]).combine_chunks(), ids)
    lengths = lengths.sort("descending", by=0)

    segment_tree = _SegmentTree(seq_length)
    segment_tree.add(seq_length)  # the max, `seq_length` bin is always available
    space_to_bin = defaultdict(deque)

    # Bin is represented as a dict (of example ids and sum of their lengths) to allow in-place updates
    bins: list[dict] = []
    for length, idx in zip(lengths.field(0).to_numpy(), lengths.field(1).to_numpy()):
        space = segment_tree.search(length)

        if space < seq_length:
            bin = space_to_bin[space].popleft()
        else:
            bin = {"ids": [], "length": 0}
            bins.append(bin)

        bin["ids"].append(idx)
        bin["length"] += length
        if space < seq_length and not space_to_bin[space]:
            segment_tree.remove(space)

        space = space - length
        space_to_bin[space].append(bin)
        if space > 0:
            segment_tree.add(space)

    examples = pc.take(examples, [id_ for bin in bins for id_ in bin["ids"]])
    offsets = np.array([0] + [bin["length"] for bin in bins])
    offsets = np.cumsum(offsets)

    columns = []
    for column in examples.columns:
        assert len(column.chunks) == 1  # `pc.take` returns a ChunkedArray with a single chunk
        column = column.chunks[0]
        if pa.types.is_list(column.type) or pa.types.is_large_list(column.type):
            dtype = column.offsets.type.to_pandas_dtype()
            column = type(column).from_arrays(offsets.astype(dtype), column.values)
        columns.append(column)
    return pa.Table.from_arrays(columns, names=examples.column_names)


def _pack_wrapped(examples: pa.Table, seq_length: int) -> pa.Table:
    """Pack sequences in a pyarrow Table using a wrapped strategy."""
    columns = []
    for column in examples.columns:
        if pyarrow.types.is_list(column.type) or pyarrow.types.is_large_list(column.type):
            if isinstance(column, pa.ChunkedArray):
                column = column.combine_chunks()
            offsets, values = column.offsets, column.values
            values = values[offsets[0].as_py() : offsets[-1].as_py()]
            num_elements = len(values)
            dtype = offsets.type.to_pandas_dtype()  # np.int32 or np.int64
            offsets = np.arange(0, num_elements, seq_length, dtype=dtype)
            offsets = np.concatenate((offsets, [num_elements]))
            column = type(column).from_arrays(offsets, values)
        columns.append(column)
    return pa.Table.from_arrays(columns, names=examples.column_names)


def pack_dataset(
    dataset: DatasetType, seq_length: int, strategy: str = "ffd", map_kwargs: Optional[dict[str, Any]] = None
) -> DatasetType:
    r"""
    Pack sequences in a dataset into chunks of size `seq_length`.

    Args:
        dataset (`Dataset` or `DatasetDict`):
            Dataset to pack
        seq_length (`int`):
            Target sequence length to pack to.
        strategy (`str`, *optional*, defaults to `"ffd"`):
            Packing strategy to use. Can be either:

            - `"ffd"` (First Fit Decreasing): Slower but preserves sequence boundaries. Sequences are never cut in the
                middle.
            - `"wrapped"`: Faster but more aggressive. Ignores sequence boundaries and will cut sequences in the middle
                to completely fill each packed sequence with data.
        map_kwargs (`dict` or `None`, *optional*, defaults to `None`):
            Additional keyword arguments to pass to the dataset's map method when packing examples.

    Returns:
        `Dataset` or `DatasetDict`: The dataset with packed sequences. The number of examples may
        decrease as sequences are combined.

    Example:
    ```python
    >>> from datasets import Dataset
    >>> from trl import pack_dataset
    >>> examples = {
    ...     "input_ids": [[1, 2, 3], [4, 5], [6, 7, 8], [9]],
    ...     "attention_mask": [[1, 1, 0], [1, 0], [1, 0, 0], [1]]
    ... }
    >>> dataset = Dataset.from_dict(examples)
    >>> packed_dataset = pack_dataset(dataset, seq_length=4, strategy="ffd")
    >>> packed_dataset[:]
    {'input_ids': [[1, 2, 3, 9], [6, 7, 8, 4, 5]],
     'attention_mask': [[1, 1, 0, 1], [1, 0, 0, 1, 0]]}
    ```
    """
    if map_kwargs is None:
        map_kwargs = {}
    # Fast packing with pyarrow
    dataset = dataset.with_format("arrow")
    if strategy == "ffd":
        dataset = dataset.map(_pack_ffd, batched=True, fn_kwargs={"seq_length": seq_length}, **map_kwargs)
    elif strategy == "wrapped":
        dataset = dataset.map(_pack_wrapped, batched=True, fn_kwargs={"seq_length": seq_length}, **map_kwargs)
    else:
        raise ValueError(f"Invalid packing strategy: {strategy}. Use 'ffd' or 'wrapped'.")
    dataset = dataset.with_format(None)
    return dataset


def truncate_dataset(
    dataset: DatasetType, max_length: int, map_kwargs: Optional[dict[str, Any]] = None
) -> DatasetType:
    r"""
    Truncate sequences in a dataset to a specifed `max_length`.

    Args:
        dataset (`Dataset` or `DatasetDict`):
            Dataset to truncate.
        seq_length (`int`):
            Maximum sequence length to truncate to.
        map_kwargs (`dict` or `None`, *optional*, defaults to `None`):
            Additional keyword arguments to pass to the dataset's map method when truncating examples.

    Returns:
        `Dataset` or `DatasetDict`: The dataset with truncated sequences.

    Example:
    ```python
    >>> from datasets import Dataset
    >>> examples = {
    ...     "input_ids": [[1, 2, 3], [4, 5, 6, 7], [8]],
    ...     "attention_mask": [[0, 1, 1], [0, 0, 1, 1], [1]],
    ... }
    >>> dataset = Dataset.from_dict(examples)
    >>> truncated_dataset = truncate_dataset(dataset, max_length=2)
    >>> truncated_dataset[:]
    {'input_ids': [[1, 2], [4, 5], [8]],
     'attention_mask': [[0, 1], [0, 0], [1]]}
    ```
    """
    if map_kwargs is None:
        map_kwargs = {}
    if isinstance(dataset, Dataset):
        # Fast truncation with pyarrow
        def truncate(examples):
            truncated_columns = []
            for column in examples.columns:
                if pyarrow.types.is_list(column.type) or pyarrow.types.is_large_list(column.type):
                    column = pc.list_slice(column, 0, max_length)
                truncated_columns.append(column)
            return pa.Table.from_arrays(truncated_columns, names=examples.column_names)

        dataset = dataset.with_format("arrow")
        dataset = dataset.map(truncate, batched=True, **map_kwargs)
        dataset = dataset.with_format(None)
    else:

        def truncate(examples):
            truncated_examples = {}
            for key, column in examples.items():
                if column and isinstance(column[0], list):
                    column = [val[:max_length] for val in column]
                truncated_examples[key] = column
            return truncated_examples

        dataset = dataset.map(
            truncate,
            batched=True,
            **map_kwargs,
        )
    return dataset


def maybe_convert_to_chatml(example: dict[str, list]) -> dict[str, list]:
    """
    Convert a conversational dataset with fields `from` and `value` to ChatML format.

    This function modifies conversational data to align with OpenAI's ChatML format:
    - Replaces the key `"from"` with `"role"` in message dictionaries.
    - Replaces the key `"value"` with `"content"` in message dictionaries.
    - Renames `"conversations"` to `"messages"` for consistency with ChatML.

    Args:
        example (`dict[str, list]`):
            A single data entry containing a list of messages.

    Returns:
        `dict[str, list]`:
            Example reformatted to ChatML style.

    Example:
    ```python
    >>> from trl import maybe_convert_to_chatml
    >>> example = {
    ...     "conversations": [
    ...         {"from": "user", "value": "What color is the sky?"},
    ...         {"from": "assistant", "value": "It is blue."}
    ...     ]
    ... }
    >>> maybe_convert_to_chatml(example)
    {'messages': [{'role': 'user', 'content': 'What color is the sky?'},
                  {'role': 'assistant', 'content': 'It is blue.'}]}
    ```
    """
    # List of possible keys containing message lists
    for key in ["prompt", "completion", "chosen", "rejected", "messages", "conversations"]:
        if key in example and isinstance(example[key], list):
            messages = example[key]
            for message in messages:
                if isinstance(message, dict):
                    if "from" in message:
                        message["role"] = message.pop("from")
                    if "value" in message:
                        message["content"] = message.pop("value")

    # Rename "conversations" to "messages"
    if "conversations" in example:
        example["messages"] = example.pop("conversations")

    return example