File size: 5,978 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import warnings
from collections.abc import Mapping
from contextlib import contextmanager
from typing import Optional, Union

import numpy as np
import torch
from transformers import is_torch_npu_available, is_torch_xpu_available


def flatten_dict(nested: dict, sep: str = "/") -> dict:
    """Flatten dictionary and concatenate nested keys with separator."""

    def recurse(nest: dict, prefix: str, into: dict) -> None:
        for k, v in nest.items():
            if sep in k:
                raise ValueError(f"separator '{sep}' not allowed to be in key '{k}'")
            if isinstance(v, Mapping):
                recurse(v, prefix + k + sep, into)
            else:
                into[prefix + k] = v

    flat = {}
    recurse(nested, "", flat)
    return flat


def masked_mean(values: torch.Tensor, mask: torch.Tensor, axis: Optional[bool] = None) -> torch.Tensor:
    """Compute mean of tensor with a masked values."""
    if axis is not None:
        return (values * mask).sum(axis=axis) / mask.sum(axis=axis)
    else:
        return (values * mask).sum() / mask.sum()


def masked_var(values: torch.Tensor, mask: torch.Tensor, unbiased: bool = True) -> torch.Tensor:
    """Compute variance of tensor with masked values."""
    mean = masked_mean(values, mask)
    centered_values = values - mean
    variance = masked_mean(centered_values**2, mask)
    if unbiased:
        mask_sum = mask.sum()
        if mask_sum == 0:
            raise ValueError(
                "The sum of the mask is zero, which can happen when `mini_batch_size=1`;"
                "try increase the `mini_batch_size` or `gradient_accumulation_steps`"
            )
        # note that if mask_sum == 1, then there is a division by zero issue
        # to avoid it you just need to use a larger minibatch_size
        bessel_correction = mask_sum / (mask_sum - 1)
        variance = variance * bessel_correction
    return variance


def masked_whiten(values: torch.Tensor, mask: torch.Tensor, shift_mean: bool = True) -> torch.Tensor:
    """Whiten values with masked values."""
    mean, var = masked_mean(values, mask), masked_var(values, mask)
    whitened = (values - mean) * torch.rsqrt(var + 1e-8)
    if not shift_mean:
        whitened += mean
    return whitened


class LengthSampler:
    """
    Samples a length
    """

    def __init__(self, min_value: int, max_value: int):
        self.values = list(range(min_value, max_value))

    def __call__(self) -> int:
        return np.random.choice(self.values)


class PPODecorators:
    optimize_device_cache = False

    @classmethod
    @contextmanager
    def empty_device_cache(cls):
        yield
        if cls.optimize_device_cache:
            if is_torch_xpu_available():
                gc.collect()
                torch.xpu.empty_cache()
                gc.collect()
            elif is_torch_npu_available():
                gc.collect()
                torch.npu.empty_cache()
                gc.collect()
            elif torch.cuda.is_available():
                gc.collect()
                torch.cuda.empty_cache()
                gc.collect()


def randn_tensor(
    shape: Union[tuple, list],
    generator: Optional[Union[list[torch.Generator], torch.Generator]] = None,
    device: Optional[torch.device] = None,
    dtype: Optional[torch.dtype] = None,
    layout: Optional[torch.layout] = None,
) -> torch.Tensor:
    """A helper function to create random tensors on the desired `device` with the desired `dtype`. When
    passing a list of generators, you can seed each batch size individually. If CPU generators are passed, the tensor
    is always created on the CPU.
    """
    # device on which tensor is created defaults to device
    rand_device = device
    batch_size = shape[0]

    layout = layout or torch.strided
    device = device or torch.device("cpu")

    if generator is not None:
        gen_device_type = generator.device.type if not isinstance(generator, list) else generator[0].device.type
        if gen_device_type != device.type and gen_device_type == "cpu":
            rand_device = "cpu"
            if device != "mps":
                warnings.warn(
                    f"The passed generator was created on 'cpu' even though a tensor on {device} was expected."
                    f" Tensors will be created on 'cpu' and then moved to {device}. Note that one can probably"
                    f" slighly speed up this function by passing a generator that was created on the {device} device.",
                    UserWarning,
                )
        elif gen_device_type != device.type and gen_device_type == "cuda":
            raise ValueError(f"Cannot generate a {device} tensor from a generator of type {gen_device_type}.")

    # make sure generator list of length 1 is treated like a non-list
    if isinstance(generator, list) and len(generator) == 1:
        generator = generator[0]

    if isinstance(generator, list):
        shape = (1,) + shape[1:]
        latents = [
            torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype, layout=layout)
            for i in range(batch_size)
        ]
        latents = torch.cat(latents, dim=0).to(device)
    else:
        latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype, layout=layout).to(device)

    return latents