Spaces:
Paused
Paused
File size: 2,870 Bytes
2f5127c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from transformers import AutoModelForCausalLM, GenerationConfig
from trl.models.modeling_base import GeometricMixtureWrapper, create_reference_model
class TestGeometricMixtureWrapper(unittest.TestCase):
def setUp(self):
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
self.model = AutoModelForCausalLM.from_pretrained(model_id)
self.ref_model = create_reference_model(self.model)
self.generation_config = GenerationConfig.from_pretrained(model_id)
self.mixture_coef = 0.5
self.wrapper = GeometricMixtureWrapper(
self.model, self.ref_model, self.generation_config, mixture_coef=self.mixture_coef
)
def test_forward(self):
input_ids = torch.tensor([[1, 2, 3, 4, 5]])
attention_mask = torch.ones_like(input_ids)
output = self.wrapper(input_ids=input_ids, attention_mask=attention_mask)
self.assertIsNotNone(output)
self.assertTrue(hasattr(output, "logits"))
self.assertEqual(output.logits.shape, (1, 5, self.model.config.vocab_size))
def test_mixture_coefficient(self):
input_ids = torch.tensor([[1, 2, 3, 4, 5]])
attention_mask = torch.ones_like(input_ids)
with torch.no_grad():
model_output = self.model(input_ids=input_ids, attention_mask=attention_mask)
ref_model_output = self.ref_model(input_ids=input_ids, attention_mask=attention_mask)
wrapper_output = self.wrapper(input_ids=input_ids, attention_mask=attention_mask)
expected_logits = torch.nn.functional.log_softmax(
self.mixture_coef * ref_model_output.logits + (1 - self.mixture_coef) * model_output.logits, dim=-1
)
self.assertTrue(torch.allclose(wrapper_output.logits, expected_logits, atol=1e-5))
def test_prepare_inputs_for_generation(self):
input_ids = torch.tensor([[1, 2, 3, 4, 5]])
attention_mask = torch.ones_like(input_ids)
inputs = self.wrapper.prepare_inputs_for_generation(input_ids, attention_mask=attention_mask, use_cache=True)
self.assertIn("input_ids", inputs)
self.assertIn("attention_mask", inputs)
self.assertFalse(inputs.get("use_cache", False))
|