File size: 18,708 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tempfile
import unittest

import torch
from datasets import load_dataset
from parameterized import parameterized
from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer
from transformers.testing_utils import require_liger_kernel, require_peft

from trl import KTOConfig, KTOTrainer
from trl.trainer.kto_trainer import _get_kl_dataset, _process_tokens, _tokenize

from .testing_utils import require_no_wandb


class KTOTrainerTester(unittest.TestCase):
    def setUp(self):
        self.model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
        self.model = AutoModelForCausalLM.from_pretrained(self.model_id)
        self.ref_model = AutoModelForCausalLM.from_pretrained(self.model_id)
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
        self.tokenizer.pad_token = self.tokenizer.eos_token

        # get t5 as seq2seq example:
        model_id = "trl-internal-testing/tiny-T5ForConditionalGeneration"
        self.t5_model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
        self.t5_ref_model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
        self.t5_tokenizer = AutoTokenizer.from_pretrained(model_id)

    @parameterized.expand(
        [
            ("qwen", "standard_preference", "kto", True, True),
            # ("t5", "standard_implicit_prompt_preference", "kto", True, False), # KTO broken for enc-dec
            ("qwen", "standard_unpaired_preference", "kto", False, True),
            # ("t5", "conversational_preference", "kto", False, False),
            ("qwen", "conversational_implicit_prompt_preference", "apo_zero_unpaired", True, True),
            # ("t5", "conversational_unpaired_preference", "apo_zero_unpaired", True, False),
            ("qwen", "standard_unpaired_preference", "apo_zero_unpaired", False, True),
            # ("t5", "conversational_unpaired_preference", "apo_zero_unpaired", False, False),
        ]
    )
    def test_kto_trainer(self, name, config_name, loss_type, pre_compute, eval_dataset):
        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = KTOConfig(
                output_dir=tmp_dir,
                per_device_train_batch_size=2,
                max_steps=3,
                remove_unused_columns=False,
                gradient_accumulation_steps=1,
                learning_rate=9e-1,
                eval_strategy="steps" if eval_dataset else "no",
                beta=0.1,
                precompute_ref_log_probs=pre_compute,
                loss_type=loss_type,
                report_to="none",
            )

            dummy_dataset = load_dataset("trl-internal-testing/zen", config_name)

            if name == "qwen":
                model = self.model
                ref_model = self.ref_model
                tokenizer = self.tokenizer
            elif name == "t5":
                model = self.t5_model
                ref_model = self.t5_ref_model
                tokenizer = self.t5_tokenizer

            trainer = KTOTrainer(
                model=model,
                ref_model=ref_model,
                args=training_args,
                processing_class=tokenizer,
                train_dataset=dummy_dataset["train"],
                eval_dataset=dummy_dataset["test"] if eval_dataset else None,
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the parameters have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                if param.sum() != 0:  # ignore 0 biases
                    self.assertFalse(torch.equal(param, new_param))

    def test_kto_trainer_with_ref_model_is_model(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = KTOConfig(
                output_dir=tmp_dir,
                per_device_train_batch_size=2,
                max_steps=3,
                report_to="none",
            )

            dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_unpaired_preference")

            with self.assertRaises(ValueError):
                KTOTrainer(
                    model=self.model,
                    ref_model=self.model,  # ref_model can't be the same as model
                    args=training_args,
                    processing_class=self.tokenizer,
                    train_dataset=dummy_dataset["train"],
                )

    def test_tokenize_and_process_tokens(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = KTOConfig(
                output_dir=tmp_dir,
                per_device_train_batch_size=2,
                max_steps=3,
                remove_unused_columns=False,
                gradient_accumulation_steps=1,
                learning_rate=9e-1,
                eval_strategy="steps",
                beta=0.1,
                report_to="none",
            )

            dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_unpaired_preference")

            trainer = KTOTrainer(
                model=self.model,
                ref_model=self.ref_model,
                args=training_args,
                processing_class=self.tokenizer,
                train_dataset=dummy_dataset["train"],
                eval_dataset=dummy_dataset["test"],
            )

            train_dataset = dummy_dataset["train"]
            tokenized_dataset = train_dataset.map(
                _tokenize,
                fn_kwargs={"tokenizer": trainer.tokenizer},
                batched=True,
                batch_size=2,
            )
            self.assertListEqual(tokenized_dataset["prompt"], train_dataset["prompt"])
            self.assertListEqual(tokenized_dataset["completion"], train_dataset["completion"])
            self.assertListEqual(tokenized_dataset["label"], train_dataset["label"])
            self.assertListEqual(tokenized_dataset["prompt_input_ids"][0], [46518, 374, 2664, 1091])
            self.assertListEqual(tokenized_dataset["prompt_attention_mask"][0], [1, 1, 1, 1])
            self.assertListEqual(tokenized_dataset["answer_input_ids"][0], [27261, 13])
            self.assertListEqual(tokenized_dataset["answer_attention_mask"][0], [1, 1])

            # Test corruption of (prompt, completion) pairs for KL dataset
            for batch_size in [2, 3]:
                tokenized_kl_dataset = tokenized_dataset.map(_get_kl_dataset, batched=True, batch_size=batch_size)

                # Verify that the "answer_input_ids" have been modified, meaning the new "answer_input_ids" differ
                # from the original ones. However, when the length of the dataset modulo batch_size equals 1,
                # the last batch remains unaltered. This is a rare scenario that does not impact the training
                # process, so we exclude it from testing by iterating only up to len - 1.
                for i in range(len(tokenized_kl_dataset["answer_input_ids"]) - 1):
                    self.assertListEqual(
                        tokenized_dataset["prompt_input_ids"][i],
                        tokenized_kl_dataset["prompt_input_ids"][i],
                    )
                    self.assertListEqual(
                        tokenized_dataset["prompt_attention_mask"][i],
                        tokenized_kl_dataset["prompt_attention_mask"][i],
                    )
                    self.assertNotEqual(
                        tokenized_dataset["answer_input_ids"][i],
                        tokenized_kl_dataset["answer_input_ids"][i],
                    )

            fn_kwargs = {
                "prefix": "",
                "is_encoder_decoder": trainer.is_encoder_decoder,
                "tokenizer": trainer.tokenizer,
                "max_length": trainer.max_length,
                "truncation_mode": trainer.truncation_mode,
                "label_pad_token_id": trainer.label_pad_token_id,
                "max_prompt_length": trainer.max_prompt_length,
            }
            processed_dataset = tokenized_dataset.map(_process_tokens, fn_kwargs=fn_kwargs, num_proc=2)
            self.assertListEqual(processed_dataset["prompt"], train_dataset["prompt"])
            self.assertListEqual(processed_dataset["completion"], train_dataset["completion"])
            self.assertListEqual(processed_dataset["label"], train_dataset["label"])
            self.assertListEqual(processed_dataset["prompt_input_ids"][0], [46518, 374, 2664, 1091])
            self.assertListEqual(processed_dataset["prompt_attention_mask"][0], [1, 1, 1, 1])
            self.assertListEqual(
                processed_dataset["completion_input_ids"][0], [46518, 374, 2664, 1091, 27261, 13, 151645]
            )
            self.assertListEqual(processed_dataset["completion_attention_mask"][0], [1, 1, 1, 1, 1, 1, 1])
            self.assertListEqual(
                processed_dataset["completion_labels"][0], [-100, -100, -100, -100, 27261, 13, 151645]
            )

    def test_kto_trainer_without_providing_ref_model(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = KTOConfig(
                output_dir=tmp_dir,
                per_device_train_batch_size=2,
                max_steps=3,
                remove_unused_columns=False,
                gradient_accumulation_steps=4,
                learning_rate=9e-1,
                eval_strategy="steps",
                beta=0.1,
                report_to="none",
            )

            dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_unpaired_preference")

            trainer = KTOTrainer(
                model=self.model,
                ref_model=None,
                args=training_args,
                processing_class=self.tokenizer,
                train_dataset=dummy_dataset["train"],
                eval_dataset=dummy_dataset["test"],
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the parameters have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                if param.sum() != 0:  # ignore 0 biases
                    self.assertFalse(torch.equal(param, new_param))

    @require_peft
    def test_kto_trainer_without_providing_ref_model_with_lora(self):
        from peft import LoraConfig

        lora_config = LoraConfig(
            r=16,
            lora_alpha=32,
            lora_dropout=0.05,
            bias="none",
            task_type="CAUSAL_LM",
        )

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = KTOConfig(
                output_dir=tmp_dir,
                per_device_train_batch_size=2,
                max_steps=3,
                remove_unused_columns=False,
                gradient_accumulation_steps=4,
                learning_rate=9e-1,
                eval_strategy="steps",
                beta=0.1,
                report_to="none",
            )

            dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_unpaired_preference")

            trainer = KTOTrainer(
                model=self.model,
                ref_model=None,
                args=training_args,
                processing_class=self.tokenizer,
                train_dataset=dummy_dataset["train"],
                eval_dataset=dummy_dataset["test"],
                peft_config=lora_config,
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the parameters have changed
            for n, param in previous_trainable_params.items():
                if "lora" in n:
                    new_param = trainer.model.get_parameter(n)
                    if param.sum() != 0:  # ignore 0 biases
                        self.assertFalse(torch.equal(param, new_param))

    @require_no_wandb
    def test_kto_trainer_generate_during_eval_no_wandb(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = KTOConfig(
                output_dir=tmp_dir,
                per_device_train_batch_size=2,
                max_steps=3,
                remove_unused_columns=False,
                gradient_accumulation_steps=1,
                learning_rate=9e-1,
                eval_strategy="steps",
                beta=0.1,
                generate_during_eval=True,
                report_to="none",
            )

            dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_unpaired_preference")

            with self.assertRaisesRegex(
                ValueError,
                expected_regex="`generate_during_eval=True` requires Weights and Biases or Comet to be installed."
                " Please install `wandb` or `comet-ml` to resolve.",
            ):
                KTOTrainer(
                    model=self.model,
                    ref_model=None,
                    args=training_args,
                    processing_class=self.tokenizer,
                    train_dataset=dummy_dataset["train"],
                    eval_dataset=dummy_dataset["test"],
                )

    @require_peft
    def test_kto_lora_save(self):
        from peft import LoraConfig, get_peft_model

        lora_config = LoraConfig(
            r=16,
            lora_alpha=32,
            lora_dropout=0.05,
            bias="none",
            task_type="CAUSAL_LM",
        )

        # lora model
        model = AutoModelForCausalLM.from_pretrained(self.model_id)
        model_peft = get_peft_model(model, lora_config)

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = KTOConfig(
                output_dir=tmp_dir,
                per_device_train_batch_size=2,
                max_steps=3,
                remove_unused_columns=False,
                gradient_accumulation_steps=4,
                learning_rate=9e-1,
                eval_strategy="steps",
                beta=0.1,
                report_to="none",
            )

            dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_unpaired_preference")

            # kto train lora model with a lora config
            trainer = KTOTrainer(
                model=model_peft,
                ref_model=None,
                args=training_args,
                processing_class=self.tokenizer,
                train_dataset=dummy_dataset["train"],
                eval_dataset=dummy_dataset["test"],
                peft_config=lora_config,
            )

            # train the model
            trainer.train()

            # save peft adapter
            trainer.save_model()

            # assert that the model is loaded without giving OSError
            try:
                AutoModelForCausalLM.from_pretrained(tmp_dir)
            except OSError:
                self.fail("Loading the saved peft adapter failed")

    @require_liger_kernel
    def test_kto_trainer_with_liger(self):
        """Test KTO trainer with Liger loss enabled."""
        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = KTOConfig(
                output_dir=tmp_dir,
                report_to="none",
                use_liger_loss=True,  # Enable Liger loss
            )

            dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_unpaired_preference")

            trainer = KTOTrainer(
                model=self.model,
                args=training_args,
                processing_class=self.tokenizer,
                train_dataset=dummy_dataset["train"],
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # check the params have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                # check the params have changed - ignore 0 biases
                if param.sum() != 0:
                    self.assertFalse(torch.equal(param, new_param))

    def test_compute_metrics(self):
        model = AutoModelForCausalLM.from_pretrained("trl-internal-testing/tiny-Qwen2ForCausalLM-2.5")
        ref_model = AutoModelForCausalLM.from_pretrained("trl-internal-testing/tiny-Qwen2ForCausalLM-2.5")
        tokenizer = AutoTokenizer.from_pretrained("trl-internal-testing/tiny-Qwen2ForCausalLM-2.5")
        tokenizer.pad_token = tokenizer.eos_token

        dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_unpaired_preference")

        def dummy_compute_metrics(*args, **kwargs):
            return {"test": 0.0}

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = KTOConfig(
                output_dir=tmp_dir,
                remove_unused_columns=False,
                per_device_train_batch_size=2,
                do_eval=True,
                eval_strategy="steps",
                eval_steps=1,
                per_device_eval_batch_size=2,
                report_to="none",
            )

            trainer = KTOTrainer(
                model=model,
                ref_model=ref_model,
                args=training_args,
                processing_class=tokenizer,
                train_dataset=dummy_dataset["train"],
                eval_dataset=dummy_dataset["test"],
                compute_metrics=dummy_compute_metrics,
            )

            trainer.train()

            self.assertEqual(trainer.state.log_history[-2]["eval_test"], 0.0)