File size: 4,646 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Usage:

python examples/scripts/xpo.py \
    --model_name_or_path trl-lib/pythia-1b-deduped-tldr-sft  \
    --reward_model_path trl-lib/pythia-1b-deduped-tldr-rm \
    --dataset_name trl-lib/tldr \
    --learning_rate 5.0e-7 \
    --output_dir pythia-1b-tldr-xpo \
    --per_device_train_batch_size 4 \
    --gradient_accumulation_steps 32 \
    --num_train_epochs 3 \
    --max_new_tokens 64 \
    --warmup_ratio 0.1 \
    --missing_eos_penalty 1.0 \
    --push_to_hub
"""

import torch
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer, GenerationConfig

from trl import (
    HfPairwiseJudge,
    LogCompletionsCallback,
    ModelConfig,
    OpenAIPairwiseJudge,
    PairRMJudge,
    ScriptArguments,
    TrlParser,
    XPOConfig,
    XPOTrainer,
    get_kbit_device_map,
    get_quantization_config,
)
from trl.trainer.utils import SIMPLE_CHAT_TEMPLATE


JUDGES = {"pair_rm": PairRMJudge, "openai": OpenAIPairwiseJudge, "hf": HfPairwiseJudge}


if __name__ == "__main__":
    parser = TrlParser((ScriptArguments, XPOConfig, ModelConfig))
    script_args, training_args, model_args = parser.parse_args_and_config()
    training_args.gradient_checkpointing_kwargs = {"use_reentrant": True}

    torch_dtype = (
        model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
    )
    quantization_config = get_quantization_config(model_args)
    model_kwargs = dict(
        revision=model_args.model_revision,
        attn_implementation=model_args.attn_implementation,
        torch_dtype=torch_dtype,
        use_cache=False if training_args.gradient_checkpointing else True,
        device_map=get_kbit_device_map() if quantization_config is not None else None,
        quantization_config=quantization_config,
    )

    model = AutoModelForCausalLM.from_pretrained(
        model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, **model_kwargs
    )
    ref_model = AutoModelForCausalLM.from_pretrained(
        model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, **model_kwargs
    )

    if training_args.reward_model_path is not None:
        reward_model = AutoModelForSequenceClassification.from_pretrained(
            training_args.reward_model_path,
            num_labels=1,
            trust_remote_code=model_args.trust_remote_code,
            **model_kwargs,
        )
    else:
        reward_model = None

    if training_args.judge is not None:
        judge_cls = JUDGES[training_args.judge]
        judge = judge_cls()
    else:
        judge = None

    tokenizer = AutoTokenizer.from_pretrained(
        model_args.model_name_or_path, padding_side="left", trust_remote_code=model_args.trust_remote_code
    )
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
    if tokenizer.chat_template is None:
        tokenizer.chat_template = SIMPLE_CHAT_TEMPLATE

    dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config)

    trainer = XPOTrainer(
        model=model,
        ref_model=ref_model,
        reward_model=reward_model,
        judge=judge,
        args=training_args,
        train_dataset=dataset[script_args.dataset_train_split],
        eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None,
        processing_class=tokenizer,
    )

    if training_args.eval_strategy != "no":
        generation_config = GenerationConfig(
            max_new_tokens=training_args.max_new_tokens, do_sample=True, temperature=training_args.temperature
        )
        completions_callback = LogCompletionsCallback(trainer, generation_config, num_prompts=8)
        trainer.add_callback(completions_callback)

    trainer.train()

    # Save and push to hub
    trainer.save_model(training_args.output_dir)
    if training_args.push_to_hub:
        trainer.push_to_hub(dataset_name=script_args.dataset_name)