File size: 5,921 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Run the BCO training script with the commands below. In general, the optimal configuration for BCO will be similar to that of KTO.

# Full training:
python examples/scripts/bco.py \
    --model_name_or_path Qwen/Qwen2.5-0.5B-Instruct \
    --trust_remote_code \
    --dataset_name trl-lib/ultrafeedback-gpt-3.5-turbo-helpfulness \
    --per_device_train_batch_size 16 \
    --per_device_eval_batch_size 32 \
    --num_train_epochs 1 \
    --learning_rate 1e-6 \
    --gradient_checkpointing \
    --gradient_accumulation_steps 1 \
    --logging_steps 0.01 \
    --eval_steps 0.2 \
    --save_strategy no \
    --output_dir=bco-aligned-model \
    --logging_first_step \
    --max_length 2048 \
    --max_prompt_length 1536 \
    --max_completion_length 1024 \
    --no_remove_unused_columns \
    --warmup_ratio 0.1 \
    --bf16 \
    --report_to wandb

# QLoRA:
python examples/scripts/bco.py \
    --model_name_or_path=nnheui/stablelm-2-1_6b-sft-full \
    --per_device_train_batch_size 16 \
    --per_device_eval_batch_size 32 \
    --num_train_epochs 1 \
    --learning_rate 1e-6 \
    --gradient_checkpointing \
    --gradient_accumulation_steps 1 \
    --logging_steps 0.01 \
    --eval_steps 0.2 \
    --save_strategy no \
    --output_dir=bco-aligned-model-lora \
    --logging_first_step \
    --warmup_ratio 0.1 \
    --report_to wandb \
    --max_length 2048 \
    --max_prompt_length 1536 \
    --max_completion_length 1024 \
    --no_remove_unused_columns \
    --warmup_ratio 0.1 \
    --bf16 \
    --use_peft \
    --load_in_4bit \
    --lora_target_modules=all-linear \
    --lora_r=16 \
    --lora_alpha=16
"""

from functools import partial

import torch
import torch.nn.functional as F
from accelerate import Accelerator
from datasets import load_dataset
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, PreTrainedModel

from trl import BCOConfig, BCOTrainer, ModelConfig, ScriptArguments, get_peft_config, setup_chat_format


def embed_prompt(input_ids: torch.LongTensor, attention_mask: torch.LongTensor, model: PreTrainedModel):
    """
    Borrowed from https://huggingface.co/nomic-ai/nomic-embed-text-v1.5#transformers
    """

    def mean_pooling(model_output, attention_mask):
        token_embeddings = model_output[0]
        input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
        return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)

    with torch.no_grad():
        model_output = model(input_ids=input_ids, attention_mask=attention_mask)
        embeddings = mean_pooling(model_output, attention_mask)

    matryoshka_dim = 512
    # normalize embeddings
    embeddings = F.normalize(embeddings, p=2, dim=1)
    embeddings = F.layer_norm(embeddings, normalized_shape=(embeddings.shape[1],))
    embeddings = embeddings[:, :matryoshka_dim]

    return embeddings


if __name__ == "__main__":
    parser = HfArgumentParser((ScriptArguments, BCOConfig, ModelConfig))
    script_args, training_args, model_args = parser.parse_args_into_dataclasses()

    training_args.gradient_checkpointing_kwargs = {"use_reentrant": True}

    # Load a pretrained model
    model = AutoModelForCausalLM.from_pretrained(
        model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
    )
    ref_model = AutoModelForCausalLM.from_pretrained(
        model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
    )

    tokenizer = AutoTokenizer.from_pretrained(
        model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
    )
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token

    # If we are aligning a base model, we use ChatML as the default template
    if tokenizer.chat_template is None:
        model, tokenizer = setup_chat_format(model, tokenizer)

    dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config)

    accelerator = Accelerator()
    embedding_model = AutoModel.from_pretrained(
        "nomic-ai/nomic-embed-text-v1.5",
        trust_remote_code=model_args.trust_remote_code,
        safe_serialization=True,
        torch_dtype=torch.bfloat16,
        device_map="auto",
    )
    embedding_model = accelerator.prepare_model(embedding_model)
    embedding_tokenizer = AutoTokenizer.from_pretrained(
        "bert-base-uncased", trust_remote_code=model_args.trust_remote_code
    )
    embedding_func = partial(
        embed_prompt,
        model=embedding_model,
    )

    # Initialize the BCO trainer
    trainer = BCOTrainer(
        model,
        ref_model,
        args=training_args,
        train_dataset=dataset[script_args.dataset_train_split],
        eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None,
        processing_class=tokenizer,
        peft_config=get_peft_config(model_args),
        embedding_func=embedding_func,
        embedding_tokenizer=embedding_tokenizer,
    )

    # Train and push the model to the Hub
    trainer.train()

    # Save and push to hub
    trainer.save_model(training_args.output_dir)
    if training_args.push_to_hub:
        trainer.push_to_hub(dataset_name=script_args.dataset_name)