File size: 5,442 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import csv

import evaluate
import numpy as np
import torch
from datasets import load_dataset
from tqdm import tqdm
from transformers import AutoModelForCausalLM, AutoTokenizer, is_torch_npu_available, is_torch_xpu_available


toxicity = evaluate.load("ybelkada/toxicity", "DaNLP/da-electra-hatespeech-detection", module_type="measurement")
ds = load_dataset("OxAISH-AL-LLM/wiki_toxic", split="test")

parser = argparse.ArgumentParser(description="Evaluate de-toxified models")
parser.add_argument("--model_type", default="all", type=str, help="Relative path to the source model folder")
parser.add_argument("--output_file", default="toxicity.csv", type=str, help="Relative path to the source model folder")
parser.add_argument("--batch_size", default=64, type=int, help="Batch size")
parser.add_argument("--num_samples", default=400, type=int, help="Number of samples")
parser.add_argument("--context_length", default=2000, type=int, help="Number of samples")
parser.add_argument("--max_new_tokens", default=30, type=int, help="Max new tokens for generation")
args = parser.parse_args()


if args.model_type == "all":
    MODELS_TO_TEST = [
        "ybelkada/gpt-neo-125m-detox",
        "EleutherAI/gpt-neo-125M",
        "EleutherAI/gpt-neo-2.7B",
        "ybelkada/gpt-neo-2.7B-detox",
        "ybelkada/gpt-j-6b-sharded-bf16",
        "ybelkada/gpt-j-6b-detoxs",
    ]
elif args.model_type == "gpt-neo":
    MODELS_TO_TEST = [
        "ybelkada/gpt-neo-125m-detox",
        "EleutherAI/gpt-neo-125M",
        "EleutherAI/gpt-neo-2.7B",
        "ybelkada/gpt-neo-2.7B-detox",
    ]
elif args.model_type == "gpt-j":
    MODELS_TO_TEST = [
        "ybelkada/gpt-j-6b-sharded-bf16",
        "ybelkada/gpt-j-6b-detox",
    ]
else:
    MODELS_TO_TEST = [args.model_type]
NUM_SAMPLES = args.num_samples
BATCH_SIZE = args.batch_size
output_file = args.output_file
max_new_tokens = args.max_new_tokens
context_length = args.context_length
if is_torch_xpu_available():
    device = torch.xpu.current_device()
elif is_torch_npu_available():
    device = torch.npu.current_device()
else:
    device = torch.cuda.current_device() if torch.cuda.is_available() else "cpu"

# consider only toxic prompts
ds = ds.filter(lambda x: x["label"] == 1)

toxicities = {}

# open a csv file
file = open(f"{output_file}", "w", newline="")
writer = csv.writer(file)
# add first rows
writer.writerow(["model_id", "mean_toxicity", "std_toxicity"])


for model_id in tqdm(MODELS_TO_TEST):
    model = AutoModelForCausalLM.from_pretrained(model_id, device_map={"": device}, torch_dtype=torch.bfloat16)
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    tokenizer.pad_token = tokenizer.eos_token
    tokenizer.padding_side = "left"
    input_texts = []

    for i, example in enumerate(ds):
        # set seed
        torch.manual_seed(42)

        input_text = example["comment_text"]
        input_texts.append(input_text[:2000])

        if i > NUM_SAMPLES:
            break

        if (i + 1) % BATCH_SIZE == 0:
            inputs = tokenizer(input_texts, return_tensors="pt", padding=True).to(device)
            inputs.input_ids = inputs.input_ids[:context_length]
            inputs.attention_mask = inputs.attention_mask[:context_length]
            outputs = model.generate(**inputs, do_sample=True, max_new_tokens=max_new_tokens, use_cache=True)
            generated_texts = tokenizer.batch_decode(outputs, skip_special_tokens=True)
            generated_texts = [
                generated_text.replace(input_texts[i], "") for i, generated_text in enumerate(generated_texts)
            ]
            toxicity_score = toxicity.compute(predictions=generated_texts)
            input_texts = []

            if model_id not in toxicities:
                toxicities[model_id] = []
            toxicities[model_id].extend(toxicity_score["toxicity"])

    # last batch
    inputs = tokenizer(input_texts, return_tensors="pt", padding=True).to(device)
    outputs = model.generate(**inputs, do_sample=True, max_new_tokens=30)
    generated_texts = tokenizer.batch_decode(outputs, skip_special_tokens=True)
    generated_texts = [generated_text.replace(input_texts[i], "") for i, generated_text in enumerate(generated_texts)]
    toxicity_score = toxicity.compute(predictions=generated_texts)
    toxicities[model_id].extend(toxicity_score["toxicity"])

    # compute mean & std using np
    mean = np.mean(toxicities[model_id])
    std = np.std(toxicities[model_id])

    # save to file
    writer.writerow([model_id, mean, std])

    # print
    print(f"Model: {model_id} - Mean: {mean} - Std: {std}")

    model = None
    if is_torch_xpu_available():
        torch.xpu.empty_cache()
    elif is_torch_npu_available():
        torch.npu.empty_cache()
    else:
        torch.cuda.empty_cache()

# close file
file.close()