Spaces:
Paused
Paused
File size: 5,442 Bytes
2f5127c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import csv
import evaluate
import numpy as np
import torch
from datasets import load_dataset
from tqdm import tqdm
from transformers import AutoModelForCausalLM, AutoTokenizer, is_torch_npu_available, is_torch_xpu_available
toxicity = evaluate.load("ybelkada/toxicity", "DaNLP/da-electra-hatespeech-detection", module_type="measurement")
ds = load_dataset("OxAISH-AL-LLM/wiki_toxic", split="test")
parser = argparse.ArgumentParser(description="Evaluate de-toxified models")
parser.add_argument("--model_type", default="all", type=str, help="Relative path to the source model folder")
parser.add_argument("--output_file", default="toxicity.csv", type=str, help="Relative path to the source model folder")
parser.add_argument("--batch_size", default=64, type=int, help="Batch size")
parser.add_argument("--num_samples", default=400, type=int, help="Number of samples")
parser.add_argument("--context_length", default=2000, type=int, help="Number of samples")
parser.add_argument("--max_new_tokens", default=30, type=int, help="Max new tokens for generation")
args = parser.parse_args()
if args.model_type == "all":
MODELS_TO_TEST = [
"ybelkada/gpt-neo-125m-detox",
"EleutherAI/gpt-neo-125M",
"EleutherAI/gpt-neo-2.7B",
"ybelkada/gpt-neo-2.7B-detox",
"ybelkada/gpt-j-6b-sharded-bf16",
"ybelkada/gpt-j-6b-detoxs",
]
elif args.model_type == "gpt-neo":
MODELS_TO_TEST = [
"ybelkada/gpt-neo-125m-detox",
"EleutherAI/gpt-neo-125M",
"EleutherAI/gpt-neo-2.7B",
"ybelkada/gpt-neo-2.7B-detox",
]
elif args.model_type == "gpt-j":
MODELS_TO_TEST = [
"ybelkada/gpt-j-6b-sharded-bf16",
"ybelkada/gpt-j-6b-detox",
]
else:
MODELS_TO_TEST = [args.model_type]
NUM_SAMPLES = args.num_samples
BATCH_SIZE = args.batch_size
output_file = args.output_file
max_new_tokens = args.max_new_tokens
context_length = args.context_length
if is_torch_xpu_available():
device = torch.xpu.current_device()
elif is_torch_npu_available():
device = torch.npu.current_device()
else:
device = torch.cuda.current_device() if torch.cuda.is_available() else "cpu"
# consider only toxic prompts
ds = ds.filter(lambda x: x["label"] == 1)
toxicities = {}
# open a csv file
file = open(f"{output_file}", "w", newline="")
writer = csv.writer(file)
# add first rows
writer.writerow(["model_id", "mean_toxicity", "std_toxicity"])
for model_id in tqdm(MODELS_TO_TEST):
model = AutoModelForCausalLM.from_pretrained(model_id, device_map={"": device}, torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"
input_texts = []
for i, example in enumerate(ds):
# set seed
torch.manual_seed(42)
input_text = example["comment_text"]
input_texts.append(input_text[:2000])
if i > NUM_SAMPLES:
break
if (i + 1) % BATCH_SIZE == 0:
inputs = tokenizer(input_texts, return_tensors="pt", padding=True).to(device)
inputs.input_ids = inputs.input_ids[:context_length]
inputs.attention_mask = inputs.attention_mask[:context_length]
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=max_new_tokens, use_cache=True)
generated_texts = tokenizer.batch_decode(outputs, skip_special_tokens=True)
generated_texts = [
generated_text.replace(input_texts[i], "") for i, generated_text in enumerate(generated_texts)
]
toxicity_score = toxicity.compute(predictions=generated_texts)
input_texts = []
if model_id not in toxicities:
toxicities[model_id] = []
toxicities[model_id].extend(toxicity_score["toxicity"])
# last batch
inputs = tokenizer(input_texts, return_tensors="pt", padding=True).to(device)
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=30)
generated_texts = tokenizer.batch_decode(outputs, skip_special_tokens=True)
generated_texts = [generated_text.replace(input_texts[i], "") for i, generated_text in enumerate(generated_texts)]
toxicity_score = toxicity.compute(predictions=generated_texts)
toxicities[model_id].extend(toxicity_score["toxicity"])
# compute mean & std using np
mean = np.mean(toxicities[model_id])
std = np.std(toxicities[model_id])
# save to file
writer.writerow([model_id, mean, std])
# print
print(f"Model: {model_id} - Mean: {mean} - Std: {std}")
model = None
if is_torch_xpu_available():
torch.xpu.empty_cache()
elif is_torch_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
# close file
file.close()
|