File size: 7,727 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os

from accelerate import Accelerator
from datasets import load_dataset
from peft import LoraConfig
from tqdm import tqdm
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, logging, set_seed

from trl import SFTTrainer
from trl.trainer import ConstantLengthDataset


"""
Fine-Tune Llama-7b on SE paired dataset
"""


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--model_path", type=str, default="")
    parser.add_argument("--dataset_name", type=str, default="lvwerra/stack-exchange-paired")
    parser.add_argument("--subset", type=str, default="data/finetune")
    parser.add_argument("--split", type=str, default="train")
    parser.add_argument("--size_valid_set", type=int, default=4000)
    parser.add_argument("--streaming", action="store_true")
    parser.add_argument("--shuffle_buffer", type=int, default=5000)

    parser.add_argument("--seq_length", type=int, default=1024)
    parser.add_argument("--max_steps", type=int, default=10000)
    parser.add_argument("--batch_size", type=int, default=4)
    parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
    parser.add_argument("--eos_token_id", type=int, default=49152)

    parser.add_argument("--learning_rate", type=float, default=1e-4)
    parser.add_argument("--lr_scheduler_type", type=str, default="cosine")
    parser.add_argument("--num_warmup_steps", type=int, default=100)
    parser.add_argument("--weight_decay", type=float, default=0.05)

    parser.add_argument("--local_rank", type=int, default=0)
    parser.add_argument("--fp16", action="store_true", default=False)
    parser.add_argument("--bf16", action="store_true", default=False)
    parser.add_argument("--gradient_checkpointing", action="store_true", default=False)
    parser.add_argument("--seed", type=int, default=0)
    parser.add_argument("--num_workers", type=int, default=None)
    parser.add_argument("--output_dir", type=str, default="./checkpoints")
    parser.add_argument("--log_freq", default=1, type=int)
    parser.add_argument("--eval_freq", default=1000, type=int)
    parser.add_argument("--save_freq", default=1000, type=int)

    return parser.parse_args()


def chars_token_ratio(dataset, tokenizer, nb_examples=400):
    """
    Estimate the average number of characters per token in the dataset.
    """
    total_characters, total_tokens = 0, 0
    for _, example in tqdm(zip(range(nb_examples), iter(dataset)), total=nb_examples):
        text = prepare_sample_text(example)
        total_characters += len(text)
        if tokenizer.is_fast:
            total_tokens += len(tokenizer(text).tokens())
        else:
            total_tokens += len(tokenizer.tokenize(text))

    return total_characters / total_tokens


def print_trainable_parameters(model):
    """
    Prints the number of trainable parameters in the model.
    """
    trainable_params = 0
    all_param = 0
    for _, param in model.named_parameters():
        all_param += param.numel()
        if param.requires_grad:
            trainable_params += param.numel()
    print(
        f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
    )


def prepare_sample_text(example):
    """Prepare the text from a sample of the dataset."""
    text = f"Question: {example['question']}\n\nAnswer: {example['response_j']}"
    return text


def create_datasets(tokenizer, args):
    dataset = load_dataset(
        args.dataset_name,
        data_dir=args.subset,
        split=args.split,
        use_auth_token=True,
        num_proc=args.num_workers if not args.streaming else None,
        streaming=args.streaming,
    )
    if args.streaming:
        print("Loading the dataset in streaming mode")
        valid_data = dataset.take(args.size_valid_set)
        train_data = dataset.skip(args.size_valid_set)
        train_data = train_data.shuffle(buffer_size=args.shuffle_buffer, seed=args.seed)
    else:
        dataset = dataset.train_test_split(test_size=0.005, seed=args.seed)
        train_data = dataset["train"]
        valid_data = dataset["test"]
        print(f"Size of the train set: {len(train_data)}. Size of the validation set: {len(valid_data)}")

    chars_per_token = chars_token_ratio(train_data, tokenizer)
    print(f"The character to token ratio of the dataset is: {chars_per_token:.2f}")

    train_dataset = ConstantLengthDataset(
        tokenizer,
        train_data,
        formatting_func=prepare_sample_text,
        infinite=True,
        seq_length=args.seq_length,
        chars_per_token=chars_per_token,
    )
    valid_dataset = ConstantLengthDataset(
        tokenizer,
        valid_data,
        formatting_func=prepare_sample_text,
        infinite=False,
        seq_length=args.seq_length,
        chars_per_token=chars_per_token,
    )
    return train_dataset, valid_dataset


def run_training(args, train_data, val_data):
    print("Loading the model")

    lora_config = LoraConfig(
        r=16,
        lora_alpha=32,
        lora_dropout=0.05,
        bias="none",
        task_type="CAUSAL_LM",
    )

    train_data.start_iteration = 0

    print("Starting main loop")

    training_args = TrainingArguments(
        output_dir=args.output_dir,
        dataloader_drop_last=True,
        eval_strategy="steps",
        max_steps=args.max_steps,
        eval_steps=args.eval_freq,
        save_steps=args.save_freq,
        logging_steps=args.log_freq,
        per_device_train_batch_size=args.batch_size,
        per_device_eval_batch_size=args.batch_size,
        learning_rate=args.learning_rate,
        lr_scheduler_type=args.lr_scheduler_type,
        warmup_steps=args.num_warmup_steps,
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        gradient_checkpointing=args.gradient_checkpointing,
        fp16=args.fp16,
        bf16=args.bf16,
        weight_decay=args.weight_decay,
        run_name="llama-7b-finetuned",
        report_to="wandb",
        ddp_find_unused_parameters=False,
    )

    model = AutoModelForCausalLM.from_pretrained(
        args.model_path, load_in_8bit=True, device_map={"": Accelerator().process_index}
    )

    trainer = SFTTrainer(
        model=model,
        args=training_args,
        train_dataset=train_data,
        eval_dataset=val_data,
        peft_config=lora_config,
        packing=True,
    )

    print_trainable_parameters(trainer.model)

    print("Training...")
    trainer.train()

    print("Saving last checkpoint of the model")
    trainer.model.save_pretrained(os.path.join(args.output_dir, "final_checkpoint/"))


def main(args):
    tokenizer = AutoTokenizer.from_pretrained(args.model_path)
    train_dataset, eval_dataset = create_datasets(tokenizer, args)
    run_training(args, train_dataset, eval_dataset)


if __name__ == "__main__":
    args = get_args()
    assert args.model_path != "", "Please provide the llama model path"

    set_seed(args.seed)
    os.makedirs(args.output_dir, exist_ok=True)

    logging.set_verbosity_error()

    main(args)