File size: 6,731 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# Command Line Interfaces (CLIs)

TRL provides a powerful command-line interface (CLI) to fine-tune large language models (LLMs) using methods like Supervised Fine-Tuning (SFT), Direct Preference Optimization (DPO), and more. The CLI abstracts away much of the boilerplate, letting you launch training jobs quickly and reproducibly.

Currently supported commands are:

#### Training Commands

- `trl dpo`: fine-tune a LLM with DPO
- `trl grpo`: fine-tune a LLM with GRPO
- `trl kto`: fine-tune a LLM with KTO
- `trl sft`: fine-tune a LLM with SFT

#### Other Commands

- `trl env`: get the system information
- `trl vllm-serve`: serve a model with vLLM

## Fine-Tuning with the TRL CLI

### Basic Usage

You can launch training directly from the CLI by specifying required arguments like the model and dataset:

<hfoptions id="command_line">
<hfoption id="SFT">

```bash
trl sft \
  --model_name_or_path Qwen/Qwen2.5-0.5B \
  --dataset_name stanfordnlp/imdb
```

</hfoption>
<hfoption id="DPO">

```bash
trl dpo \
  --model_name_or_path Qwen/Qwen2.5-0.5B \
  --dataset_name anthropic/hh-rlhf
```

</hfoption>
</hfoptions>

### Using Configuration Files

To keep your CLI commands clean and reproducible, you can define all training arguments in a YAML configuration file:

<hfoptions id="config_file">
<hfoption id="SFT">

```yaml
# sft_config.yaml
model_name_or_path: Qwen/Qwen2.5-0.5B
dataset_name: stanfordnlp/imdb
```

Launch with:

```bash
trl sft --config sft_config.yaml
```

</hfoption>
<hfoption id="DPO">

```yaml
# dpo_config.yaml
model_name_or_path: Qwen/Qwen2.5-0.5B
dataset_name: anthropic/hh-rlhf
```

Launch with:

```bash
trl dpo --config dpo_config.yaml
```

</hfoption>
</hfoptions>

### Scaling Up with Accelerate

TRL CLI natively supports [🤗 Accelerate](https://huggingface.co/docs/accelerate), making it easy to scale training across multiple GPUs, machines, or use advanced setups like DeepSpeed — all from the same CLI.

You can pass any `accelerate launch` arguments directly to `trl`, such as `--num_processes`. For more information see [Using accelerate launch](https://huggingface.co/docs/accelerate/en/basic_tutorials/launch#using-accelerate-launch).

<hfoptions id="launch_args">
<hfoption id="SFT inline">

```bash
trl sft \
  --model_name_or_path Qwen/Qwen2.5-0.5B \
  --dataset_name stanfordnlp/imdb \
  --num_processes 4
```

</hfoption>
<hfoption id="SFT w/ config file">

```yaml
# sft_config.yaml
model_name_or_path: Qwen/Qwen2.5-0.5B
dataset_name: stanfordnlp/imdb
num_processes: 4
```

Launch with:

```bash
trl sft --config sft_config.yaml
```

</hfoption>
<hfoption id="DPO inline">

```bash
trl dpo \
  --model_name_or_path Qwen/Qwen2.5-0.5B \
  --dataset_name anthropic/hh-rlhf \
  --num_processes 4
```

</hfoption>
<hfoption id="DPO w/ config file">

```yaml
# dpo_config.yaml
model_name_or_path: Qwen/Qwen2.5-0.5B
dataset_name: anthropic/hh-rlhf
num_processes: 4
```

Launch with:

```bash
trl dpo --config dpo_config.yaml
```
</hfoption>
</hfoptions>

### Using `--accelerate_config` for Accelerate Configuration

The `--accelerate_config` flag lets you easily configure distributed training with [🤗 Accelerate](https://github.com/huggingface/accelerate). This flag accepts either:

* the name of a predefined config profile (built into TRL), or
* a path to a custom Accelerate YAML config file.

#### Predefined Config Profiles

TRL provides several ready-to-use Accelerate configs to simplify common training setups:

| Name         | Description                         |
| ------------ | ----------------------------------- |
| `fsdp1`      | Fully Sharded Data Parallel Stage 1 |
| `fsdp2`      | Fully Sharded Data Parallel Stage 2 |
| `zero1`      | DeepSpeed ZeRO Stage 1              |
| `zero2`      | DeepSpeed ZeRO Stage 2              |
| `zero3`      | DeepSpeed ZeRO Stage 3              |
| `multi_gpu`  | Multi-GPU training                  |
| `single_gpu` | Single-GPU training                 |

To use one of these, just pass the name to `--accelerate_config`. TRL will automatically load the corresponding config file from `trl/accelerate_config/`.

#### Example Usage

<hfoptions id="accelerate_config">
<hfoption id="SFT inline">

```bash
trl sft \
  --model_name_or_path Qwen/Qwen2.5-0.5B \
  --dataset_name stanfordnlp/imdb \
  --accelerate_config zero2  # or path/to/my/accelerate/config.yaml
```

</hfoption>
<hfoption id="SFT w/ config file">

```yaml
# sft_config.yaml
model_name_or_path: Qwen/Qwen2.5-0.5B
dataset_name: stanfordnlp/imdb
accelerate_config: zero2  # or path/to/my/accelerate/config.yaml
```

Launch with:

```bash
trl sft --config sft_config.yaml
```

</hfoption>
<hfoption id="DPO inline">

```bash
trl dpo \
  --model_name_or_path Qwen/Qwen2.5-0.5B \
  --dataset_name anthropic/hh-rlhf \
  --accelerate_config zero2  # or path/to/my/accelerate/config.yaml
```

</hfoption>
<hfoption id="DPO w/ config file">

```yaml
# dpo_config.yaml
model_name_or_path: Qwen/Qwen2.5-0.5B
dataset_name: anthropic/hh-rlhf
accelerate_config: zero2  # or path/to/my/accelerate/config.yaml
```

Launch with:

```bash
trl dpo --config dpo_config.yaml
```
</hfoption>
</hfoptions>

## Getting the System Information

You can get the system information by running the following command:

```bash
trl env
```

This will print out the system information, including the GPU information, the CUDA version, the PyTorch version, the transformers version, the TRL version, and any optional dependencies that are installed.

```txt
Copy-paste the following information when reporting an issue:

- Platform: Linux-5.15.0-1048-aws-x86_64-with-glibc2.31
- Python version: 3.11.9
- PyTorch version: 2.4.1
- accelerator(s): NVIDIA H100 80GB HBM3
- Transformers version: 4.45.0.dev0
- Accelerate version: 0.34.2
- Accelerate config: 
  - compute_environment: LOCAL_MACHINE
  - distributed_type: DEEPSPEED
  - mixed_precision: no
  - use_cpu: False
  - debug: False
  - num_processes: 4
  - machine_rank: 0
  - num_machines: 1
  - rdzv_backend: static
  - same_network: True
  - main_training_function: main
  - enable_cpu_affinity: False
  - deepspeed_config: {'gradient_accumulation_steps': 4, 'offload_optimizer_device': 'none', 'offload_param_device': 'none', 'zero3_init_flag': False, 'zero_stage': 2}
  - downcast_bf16: no
  - tpu_use_cluster: False
  - tpu_use_sudo: False
  - tpu_env: []
- Datasets version: 3.0.0
- HF Hub version: 0.24.7
- TRL version: 0.12.0.dev0+acb4d70
- bitsandbytes version: 0.41.1
- DeepSpeed version: 0.15.1
- Diffusers version: 0.30.3
- Liger-Kernel version: 0.3.0
- LLM-Blender version: 0.0.2
- OpenAI version: 1.46.0
- PEFT version: 0.12.0
- vLLM version: not installed
```

This information is required when reporting an issue.