Spaces:
Sleeping
Sleeping
| from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer | |
| from threading import Thread | |
| import gradio as gr | |
| import json | |
| import subprocess | |
| import os | |
| def install_vllm_from_patch(): | |
| script_path = "./install.sh" | |
| if not os.path.exists(script_path): | |
| print(f"Error: install.sh is not exist!") | |
| return False | |
| try: | |
| print(f"begin run install.sh") | |
| result = subprocess.run( | |
| ["bash", script_path], | |
| check=True, | |
| stdout=subprocess.PIPE, | |
| stderr=subprocess.PIPE, | |
| text = True, | |
| timeout = 300 | |
| ) | |
| print(f"result: {result}") | |
| return True | |
| except Exception as e: | |
| print(f"Error: {str(e)}") | |
| return False | |
| #install vllm from patch file | |
| #install_vllm_from_patch() | |
| # load model and tokenizer | |
| model_name = "inclusionAI/Ling-mini-2.0" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| torch_dtype="auto", | |
| device_map="auto", | |
| trust_remote_code=True | |
| ).eval() | |
| def respond( | |
| message, | |
| history: list[dict[str, str]], | |
| system_message, | |
| max_tokens, | |
| # temperature, | |
| # top_p | |
| ): | |
| """ | |
| For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
| """ | |
| #client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b") | |
| if len(system_message) == 0: | |
| system_message = "## 你是谁\n\n我是百灵(Ling),一个由蚂蚁集团(Ant Group) 开发的AI智能助手" | |
| messages = [{"role": "system", "content": system_message}] | |
| messages.extend(history) | |
| messages.append({"role": "user", "content": message}) | |
| print(f"system_prompt: {json.dumps(messages, ensure_ascii=False, indent=2)}") | |
| text = tokenizer.apply_chat_template( | |
| messages, | |
| tokenize=False, | |
| add_generation_prompt=True | |
| ) | |
| streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
| model_inputs = tokenizer([text], return_tensors="pt", return_token_type_ids=False).to(model.device) | |
| print(f"max_new_tokens={max_tokens}") | |
| model_inputs.update( | |
| dict(max_new_tokens=max_tokens, | |
| streamer = streamer, | |
| # temperature = 0.7, | |
| # top_p = 1, | |
| # presence_penalty = 1.5, | |
| ) | |
| ) | |
| # Start a separate thread for model generation to allow streaming output | |
| thread = Thread( | |
| target=model.generate, | |
| kwargs=model_inputs, | |
| ) | |
| thread.start() | |
| # Accumulate and yield text tokens as they are generated | |
| acc_text = "" | |
| for text_token in streamer: | |
| acc_text += text_token # Append the generated token to the accumulated text | |
| yield acc_text # Yield the accumulated text | |
| # Ensure the generation thread completes | |
| thread.join() | |
| """ | |
| For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
| """ | |
| chatbot = gr.ChatInterface( | |
| respond, | |
| type="messages", | |
| additional_inputs=[ | |
| gr.Textbox(value="", label="System message"), | |
| gr.Slider(minimum=1, maximum=32000, value=512, step=1, label="Max new tokens"), | |
| # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| # gr.Slider( | |
| # minimum=0.1, | |
| # maximum=1.0, | |
| # value=0.95, | |
| # step=0.05, | |
| # label="Top-p (nucleus sampling)", | |
| # ), | |
| ], | |
| ) | |
| with gr.Blocks() as demo: | |
| # with gr.Sidebar(): | |
| # gr.LoginButton() | |
| chatbot.render() | |
| if __name__ == "__main__": | |
| demo.launch() | |