# app.py from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer from threading import Thread import gradio as gr import re import torch from openai import OpenAI client = OpenAI( api_key="sk-420ab66020704eabbe37501ec39b7a2b", base_url="https://bailingchat.alipay.com", ) # define chat function def chat(user_input, max_tokens=11264): # chat history messages_template = [ # {"role": "system", "content": "You are Ling, an assistant created by inclusionAI"}, {"role": "user", "content": user_input} ] response = client.chat.completions.create( model="Ling-lite-1.5-250604", messages=messages_template, max_tokens=max_tokens, temperature=0.01, top_p=1, ) resp_text = response.choices[0].message.content print(resp_text) yield resp_text # Create a custom layout using Blocks with gr.Blocks(css=""" #markdown-output { height: 300px; overflow-y: auto; border: 1px solid #ddd; padding: 10px; } """) as demo: gr.Markdown( "## Ling-lite-1.5 AI Assistant\n" "Based on [inclusionAI/Ling-lite-1.5](https://huggingface.co/inclusionAI/Ling-lite-1.5) " ) with gr.Row(): max_tokens_slider = gr.Slider(minimum=100, maximum=10000, step=100, label="Generated length") # output_box = gr.Textbox(lines=10, label="Response") output_box = gr.Markdown(label="Response", elem_id="markdown-output") input_box = gr.Textbox(lines=8, label="Input you question") examples = gr.Examples( examples=[ ["Introducing the basic concepts of large language models"], ["How to solve long context dependencies in math problems?"] ], inputs=input_box ) interface = gr.Interface( fn=chat, inputs=[input_box, max_tokens_slider], outputs=output_box, live=False # disable auto-triggering on input change ) # launch Gradio Service demo.queue() demo.launch() # Construct Gradio Interface #interface = gr.Interface( # fn=chat, # inputs=[ # gr.Textbox(lines=8, label="输入你的问题"), # gr.Slider(minimum=100, maximum=102400, step=50, label="生成长度") # ], # outputs=[ # gr.Textbox(lines=8, label="模型回复") # ], # title="Ling-lite-1.5 AI助手", # description="基于 [inclusionAI/Ling-lite-1.5](https://huggingface.co/inclusionAI/Ling-lite-1.5) 的对话式文本生成演示。", # examples=[ # ["介绍大型语言模型的基本概念"], # ["如何解决数学问题中的长上下文依赖?"] # ] #) # launch Gradion Service #interface.launch()