Spaces:
Running
Running
# app.py | |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer | |
from threading import Thread | |
import gradio as gr | |
import re | |
import torch | |
from openai import OpenAI | |
client = OpenAI( | |
api_key="sk-420ab66020704eabbe37501ec39b7a2b", | |
base_url="https://bailingchat.alipay.com", | |
) | |
# define chat function | |
def chat(user_input, max_tokens=11264): | |
# chat history | |
messages_template = [ | |
# {"role": "system", "content": "You are Ling, an assistant created by inclusionAI"}, | |
{"role": "user", "content": user_input} | |
] | |
response = client.chat.completions.create( | |
model="Ling-lite-1.5-250604", | |
messages=messages_template, | |
max_tokens=max_tokens, | |
temperature=0.01, | |
top_p=1, | |
) | |
resp_text = response.choices[0].message.content | |
print(resp_text) | |
yield resp_text | |
# Create a custom layout using Blocks | |
with gr.Blocks(css=""" | |
#markdown-output { | |
height: 300px; | |
overflow-y: auto; | |
border: 1px solid #ddd; | |
padding: 10px; | |
} | |
""") as demo: | |
gr.Markdown( | |
"## Ling-lite-1.5 AI Assistant\n" | |
"Based on [inclusionAI/Ling-lite-1.5](https://huggingface.co/inclusionAI/Ling-lite-1.5) " | |
) | |
with gr.Row(): | |
max_tokens_slider = gr.Slider(minimum=100, maximum=10000, step=100, label="Generated length") | |
# output_box = gr.Textbox(lines=10, label="Response") | |
output_box = gr.Markdown(label="Response", elem_id="markdown-output") | |
input_box = gr.Textbox(lines=8, label="Input you question") | |
examples = gr.Examples( | |
examples=[ | |
["Introducing the basic concepts of large language models"], | |
["How to solve long context dependencies in math problems?"] | |
], | |
inputs=input_box | |
) | |
interface = gr.Interface( | |
fn=chat, | |
inputs=[input_box, max_tokens_slider], | |
outputs=output_box, | |
live=False # disable auto-triggering on input change | |
) | |
# launch Gradio Service | |
demo.queue() | |
demo.launch() | |
# Construct Gradio Interface | |
#interface = gr.Interface( | |
# fn=chat, | |
# inputs=[ | |
# gr.Textbox(lines=8, label="输入你的问题"), | |
# gr.Slider(minimum=100, maximum=102400, step=50, label="生成长度") | |
# ], | |
# outputs=[ | |
# gr.Textbox(lines=8, label="模型回复") | |
# ], | |
# title="Ling-lite-1.5 AI助手", | |
# description="基于 [inclusionAI/Ling-lite-1.5](https://huggingface.co/inclusionAI/Ling-lite-1.5) 的对话式文本生成演示。", | |
# examples=[ | |
# ["介绍大型语言模型的基本概念"], | |
# ["如何解决数学问题中的长上下文依赖?"] | |
# ] | |
#) | |
# launch Gradion Service | |
#interface.launch() | |