Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,51 +4,56 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
4 |
from peft import PeftModel, PeftConfig
|
5 |
from fastapi.middleware.cors import CORSMiddleware
|
6 |
import torch
|
7 |
-
from dotenv import load_dotenv
|
8 |
-
import os
|
9 |
-
|
10 |
-
|
11 |
-
load_dotenv()
|
12 |
-
hf_token = os.getenv("HF_TOKEN")
|
13 |
-
|
14 |
|
15 |
app = FastAPI()
|
16 |
|
|
|
17 |
app.add_middleware(
|
18 |
CORSMiddleware,
|
19 |
-
allow_origins=["*"],
|
20 |
allow_credentials=True,
|
21 |
allow_methods=["*"],
|
22 |
allow_headers=["*"],
|
23 |
)
|
24 |
|
25 |
-
|
|
|
26 |
|
27 |
try:
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
31 |
base_model = AutoModelForCausalLM.from_pretrained(
|
32 |
peft_config.base_model_name_or_path,
|
33 |
torch_dtype=torch.float32,
|
34 |
-
device_map={"": "cpu"}
|
|
|
|
|
|
|
|
|
|
|
35 |
)
|
36 |
-
tokenizer = AutoTokenizer.from_pretrained(peft_config.base_model_name_or_path)
|
37 |
-
|
38 |
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
|
|
|
42 |
|
43 |
except Exception as e:
|
44 |
raise RuntimeError(f"❌ Failed to load model + adapter: {str(e)}")
|
45 |
|
46 |
-
#
|
47 |
class EmailInput(BaseModel):
|
48 |
subject: str
|
49 |
body: str
|
50 |
|
51 |
-
#
|
52 |
@app.post("/classify")
|
53 |
async def classify_email(data: EmailInput):
|
54 |
prompt = f"""### Subject:\n{data.subject}\n\n### Body:\n{data.body}\n\n### Labels:"""
|
|
|
4 |
from peft import PeftModel, PeftConfig
|
5 |
from fastapi.middleware.cors import CORSMiddleware
|
6 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
app = FastAPI()
|
9 |
|
10 |
+
# Allow CORS for all origins (adjust this in production)
|
11 |
app.add_middleware(
|
12 |
CORSMiddleware,
|
13 |
+
allow_origins=["*"],
|
14 |
allow_credentials=True,
|
15 |
allow_methods=["*"],
|
16 |
allow_headers=["*"],
|
17 |
)
|
18 |
|
19 |
+
# Path to your HF Hub repo with full model + adapter
|
20 |
+
adapter_path = "imnim/multi-label-email-classifier"
|
21 |
|
22 |
try:
|
23 |
+
# Load PEFT config to get base model path
|
24 |
+
peft_config = PeftConfig.from_pretrained(adapter_path, use_auth_token=True)
|
25 |
+
|
26 |
+
# Load base model and tokenizer with HF auth token
|
27 |
base_model = AutoModelForCausalLM.from_pretrained(
|
28 |
peft_config.base_model_name_or_path,
|
29 |
torch_dtype=torch.float32,
|
30 |
+
device_map={"": "cpu"},
|
31 |
+
use_auth_token=True
|
32 |
+
)
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
34 |
+
peft_config.base_model_name_or_path,
|
35 |
+
use_auth_token=True
|
36 |
)
|
|
|
|
|
37 |
|
38 |
+
# Load adapter with HF auth token
|
39 |
+
model = PeftModel.from_pretrained(
|
40 |
+
base_model, adapter_path,
|
41 |
+
device_map={"": "cpu"},
|
42 |
+
use_auth_token=True
|
43 |
+
)
|
44 |
|
45 |
+
# Setup text-generation pipeline
|
46 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=-1)
|
47 |
|
48 |
except Exception as e:
|
49 |
raise RuntimeError(f"❌ Failed to load model + adapter: {str(e)}")
|
50 |
|
51 |
+
# Request schema
|
52 |
class EmailInput(BaseModel):
|
53 |
subject: str
|
54 |
body: str
|
55 |
|
56 |
+
# POST /classify endpoint
|
57 |
@app.post("/classify")
|
58 |
async def classify_email(data: EmailInput):
|
59 |
prompt = f"""### Subject:\n{data.subject}\n\n### Body:\n{data.body}\n\n### Labels:"""
|