Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,88 +1,54 @@
|
|
1 |
-
|
2 |
-
from pydantic import BaseModel
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
4 |
from peft import PeftModel, PeftConfig
|
5 |
-
from fastapi.middleware.cors import CORSMiddleware
|
6 |
import torch
|
7 |
import os
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
# Allow CORS (customize in production)
|
12 |
-
app.add_middleware(
|
13 |
-
CORSMiddleware,
|
14 |
-
allow_origins=["*"],
|
15 |
-
allow_credentials=True,
|
16 |
-
allow_methods=["*"],
|
17 |
-
allow_headers=["*"],
|
18 |
-
)
|
19 |
-
|
20 |
-
# Hugging Face access token (from env)
|
21 |
hf_token = os.getenv("HF_TOKEN")
|
22 |
|
23 |
-
# HF model repo (includes adapter + full model)
|
24 |
adapter_path = "imnim/multi-label-email-classifier"
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
peft_config = PeftConfig.from_pretrained(adapter_path, token=hf_token)
|
29 |
-
|
30 |
-
# Try loading in bfloat16, fallback to float32
|
31 |
-
try:
|
32 |
-
base_model = AutoModelForCausalLM.from_pretrained(
|
33 |
-
peft_config.base_model_name_or_path,
|
34 |
-
torch_dtype=torch.bfloat16,
|
35 |
-
device_map="auto",
|
36 |
-
token=hf_token
|
37 |
-
)
|
38 |
-
except Exception:
|
39 |
-
base_model = AutoModelForCausalLM.from_pretrained(
|
40 |
-
peft_config.base_model_name_or_path,
|
41 |
-
torch_dtype=torch.float32,
|
42 |
-
device_map="auto",
|
43 |
-
token=hf_token
|
44 |
-
)
|
45 |
|
46 |
-
|
|
|
|
|
47 |
peft_config.base_model_name_or_path,
|
|
|
|
|
48 |
token=hf_token
|
49 |
)
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
token=hf_token
|
56 |
)
|
57 |
|
58 |
-
|
59 |
-
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
60 |
-
|
61 |
-
except Exception as e:
|
62 |
-
raise RuntimeError(f"❌ Failed to load model + adapter: {str(e)}")
|
63 |
|
64 |
-
|
65 |
-
class EmailInput(BaseModel):
|
66 |
-
subject: str
|
67 |
-
body: str
|
68 |
|
69 |
-
|
70 |
-
@app.post("/classify")
|
71 |
-
async def classify_email(data: EmailInput):
|
72 |
-
prompt = f"""### Subject:\n{data.subject}\n\n### Body:\n{data.body}\n\n### Labels:"""
|
73 |
-
try:
|
74 |
-
result = pipe(prompt, max_new_tokens=50, do_sample=True, top_k=50, top_p=0.95)
|
75 |
-
full_text = result[0]["generated_text"]
|
76 |
-
label_section = full_text.split("### Labels:")[1].strip()
|
77 |
-
return {"label": label_section}
|
78 |
-
except Exception as e:
|
79 |
-
raise HTTPException(status_code=500, detail=f"Model inference failed: {str(e)}")
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
|
84 |
-
import uvicorn
|
85 |
-
|
86 |
-
if __name__ == "__main__":
|
87 |
-
uvicorn.run("app:app", host="0.0.0.0", port=7860, log_level="info")
|
88 |
-
|
|
|
1 |
+
import gradio as gr
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
from peft import PeftModel, PeftConfig
|
|
|
4 |
import torch
|
5 |
import os
|
6 |
|
7 |
+
# Hugging Face access token (stored in HF Spaces secrets)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
hf_token = os.getenv("HF_TOKEN")
|
9 |
|
|
|
10 |
adapter_path = "imnim/multi-label-email-classifier"
|
11 |
|
12 |
+
# Load PEFT config
|
13 |
+
peft_config = PeftConfig.from_pretrained(adapter_path, token=hf_token)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
# Load base model (fallback to float32 if bfloat16 fails)
|
16 |
+
try:
|
17 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
18 |
peft_config.base_model_name_or_path,
|
19 |
+
torch_dtype=torch.bfloat16,
|
20 |
+
device_map="auto",
|
21 |
token=hf_token
|
22 |
)
|
23 |
+
except:
|
24 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
25 |
+
peft_config.base_model_name_or_path,
|
26 |
+
torch_dtype=torch.float32,
|
27 |
+
device_map="auto",
|
28 |
token=hf_token
|
29 |
)
|
30 |
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(peft_config.base_model_name_or_path, token=hf_token)
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
model = PeftModel.from_pretrained(base_model, adapter_path, token=hf_token)
|
|
|
|
|
|
|
34 |
|
35 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
# Define classification function
|
38 |
+
def classify_email(subject, body):
|
39 |
+
prompt = f"""### Subject:\n{subject}\n\n### Body:\n{body}\n\n### Labels:"""
|
40 |
+
result = pipe(prompt, max_new_tokens=50, do_sample=True, top_k=50, top_p=0.95)
|
41 |
+
full_text = result[0]["generated_text"]
|
42 |
+
label_section = full_text.split("### Labels:")[1].strip()
|
43 |
+
return label_section
|
44 |
|
45 |
+
# Gradio UI
|
46 |
+
demo = gr.Interface(
|
47 |
+
fn=classify_email,
|
48 |
+
inputs=["text", "text"],
|
49 |
+
outputs="text",
|
50 |
+
title="Multi-label Email Classifier",
|
51 |
+
description="Enter subject and body to get label prediction"
|
52 |
+
)
|
53 |
|
54 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|