Spaces:
Sleeping
Sleeping
Updated with 16 bit instead of 32 bit params
Browse files
app.py
CHANGED
@@ -4,10 +4,11 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
4 |
from peft import PeftModel, PeftConfig
|
5 |
from fastapi.middleware.cors import CORSMiddleware
|
6 |
import torch
|
|
|
7 |
|
8 |
app = FastAPI()
|
9 |
|
10 |
-
# Allow CORS
|
11 |
app.add_middleware(
|
12 |
CORSMiddleware,
|
13 |
allow_origins=["*"],
|
@@ -16,44 +17,56 @@ app.add_middleware(
|
|
16 |
allow_headers=["*"],
|
17 |
)
|
18 |
|
19 |
-
#
|
|
|
|
|
|
|
20 |
adapter_path = "imnim/multi-label-email-classifier"
|
21 |
|
22 |
try:
|
23 |
-
# Load PEFT config
|
24 |
-
peft_config = PeftConfig.from_pretrained(adapter_path,
|
25 |
-
|
26 |
-
#
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
tokenizer = AutoTokenizer.from_pretrained(
|
34 |
peft_config.base_model_name_or_path,
|
35 |
-
|
36 |
)
|
37 |
|
38 |
-
# Load adapter
|
39 |
model = PeftModel.from_pretrained(
|
40 |
-
base_model,
|
41 |
-
|
42 |
-
|
43 |
)
|
44 |
|
45 |
-
#
|
46 |
-
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer
|
47 |
|
48 |
except Exception as e:
|
49 |
raise RuntimeError(f"❌ Failed to load model + adapter: {str(e)}")
|
50 |
|
51 |
-
# Request
|
52 |
class EmailInput(BaseModel):
|
53 |
subject: str
|
54 |
body: str
|
55 |
|
56 |
-
#
|
57 |
@app.post("/classify")
|
58 |
async def classify_email(data: EmailInput):
|
59 |
prompt = f"""### Subject:\n{data.subject}\n\n### Body:\n{data.body}\n\n### Labels:"""
|
|
|
4 |
from peft import PeftModel, PeftConfig
|
5 |
from fastapi.middleware.cors import CORSMiddleware
|
6 |
import torch
|
7 |
+
import os
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
11 |
+
# Allow CORS (customize in production)
|
12 |
app.add_middleware(
|
13 |
CORSMiddleware,
|
14 |
allow_origins=["*"],
|
|
|
17 |
allow_headers=["*"],
|
18 |
)
|
19 |
|
20 |
+
# Hugging Face access token (from env)
|
21 |
+
hf_token = os.getenv("HF_TOKEN")
|
22 |
+
|
23 |
+
# HF model repo (includes adapter + full model)
|
24 |
adapter_path = "imnim/multi-label-email-classifier"
|
25 |
|
26 |
try:
|
27 |
+
# Load PEFT adapter config
|
28 |
+
peft_config = PeftConfig.from_pretrained(adapter_path, token=hf_token)
|
29 |
+
|
30 |
+
# Try loading in bfloat16, fallback to float32
|
31 |
+
try:
|
32 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
33 |
+
peft_config.base_model_name_or_path,
|
34 |
+
torch_dtype=torch.bfloat16,
|
35 |
+
device_map="auto",
|
36 |
+
token=hf_token
|
37 |
+
)
|
38 |
+
except Exception:
|
39 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
40 |
+
peft_config.base_model_name_or_path,
|
41 |
+
torch_dtype=torch.float32,
|
42 |
+
device_map="auto",
|
43 |
+
token=hf_token
|
44 |
+
)
|
45 |
+
|
46 |
tokenizer = AutoTokenizer.from_pretrained(
|
47 |
peft_config.base_model_name_or_path,
|
48 |
+
token=hf_token
|
49 |
)
|
50 |
|
51 |
+
# Load the adapter
|
52 |
model = PeftModel.from_pretrained(
|
53 |
+
base_model,
|
54 |
+
adapter_path,
|
55 |
+
token=hf_token
|
56 |
)
|
57 |
|
58 |
+
# Create the pipeline — no device argument (handled by accelerate)
|
59 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
60 |
|
61 |
except Exception as e:
|
62 |
raise RuntimeError(f"❌ Failed to load model + adapter: {str(e)}")
|
63 |
|
64 |
+
# === Request Schema ===
|
65 |
class EmailInput(BaseModel):
|
66 |
subject: str
|
67 |
body: str
|
68 |
|
69 |
+
# === Endpoint ===
|
70 |
@app.post("/classify")
|
71 |
async def classify_email(data: EmailInput):
|
72 |
prompt = f"""### Subject:\n{data.subject}\n\n### Body:\n{data.body}\n\n### Labels:"""
|