Spaces:
Runtime error
Runtime error
Gradio
Browse files- app.py +232 -4
- key_info.py +27 -0
- llama2_response_mail_generator.py +58 -0
- requirements.txt +9 -0
- summarization_with_bart.py +24 -0
app.py
CHANGED
|
@@ -1,7 +1,235 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 7 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from key_info import extract_entities
|
| 4 |
+
from summarization_with_bart import summarize_email_conditional
|
| 5 |
+
from llama2_response_mail_generator import generate_email_response
|
| 6 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
| 7 |
+
import torch
|
| 8 |
+
import spacy
|
| 9 |
+
from huggingface_hub import hf_hub_download
|
| 10 |
+
from llama_cpp import Llama
|
| 11 |
+
import subprocess
|
| 12 |
|
| 13 |
+
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"], check=True)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
"""**Original code**
|
| 17 |
+
|
| 18 |
+
**CSS for Interface**
|
| 19 |
+
"""
|
| 20 |
+
|
| 21 |
+
custom_css = ''' @import url('https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.1/css/all.min.css');
|
| 22 |
+
|
| 23 |
+
body {
|
| 24 |
+
background-color: #eef1f5; /* Light grey-blue background for a neutral, clean look */
|
| 25 |
+
}
|
| 26 |
+
label {
|
| 27 |
+
color: #34495e; /* Dark blue-grey for a professional appearance */
|
| 28 |
+
font-weight: bold;
|
| 29 |
+
}
|
| 30 |
+
textarea, input, select, button {
|
| 31 |
+
background-color: #ffffff; /* Crisp white background for input fields and buttons */
|
| 32 |
+
border: 1px solid #bdc3c7; /* Soft grey border for a subtle, refined look */
|
| 33 |
+
color: #2c3e50; /* Darker shade of blue-grey for text, enhancing readability */
|
| 34 |
+
}
|
| 35 |
+
button {
|
| 36 |
+
background-color: #3498db; /* Bright blue for buttons to stand out */
|
| 37 |
+
color: black ; /* White text on buttons for clarity */
|
| 38 |
+
border-radius: 4px; /* Slightly rounded corners for a modern touch */
|
| 39 |
+
font-weight: bold; /* Bold text for emphasis */
|
| 40 |
+
font-size: 16px; /* Sizable text for easy interaction */
|
| 41 |
+
}
|
| 42 |
+
button[type="submit"], button[type="reset"], button[type="button"] {
|
| 43 |
+
font-weight: bold; /* Ensures all actionable buttons are prominent */
|
| 44 |
+
font-size: 18px; /* Larger text size for better visibility and impact */
|
| 45 |
+
}
|
| 46 |
+
.result-box {
|
| 47 |
+
background-color: #ecf0f1; /* Very light grey for result boxes, ensuring focus */
|
| 48 |
+
color: #2c3e50; /* Consistent dark blue-grey text for uniformity */
|
| 49 |
+
border: 1px solid #bdc3c7; /* Matching the input field borders for design coherence */
|
| 50 |
+
}
|
| 51 |
+
.gradio-toolbar {
|
| 52 |
+
background-color: #ffffff; /* Maintains a clean, unobtrusive toolbar appearance */
|
| 53 |
+
border-top: 2px solid #3498db; /* A pop of bright blue to delineate the toolbar */
|
| 54 |
+
}
|
| 55 |
+
|
| 56 |
+
'''
|
| 57 |
+
|
| 58 |
+
"""**Seperate** **Interface**"""
|
| 59 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
| 60 |
+
nlp = spacy.load("en_core_web_sm")
|
| 61 |
+
ner_pipeline = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english", tokenizer="dbmdz/bert-large-cased-finetuned-conll03-english")
|
| 62 |
+
model_path = './fine_tuned_roberta_for_category_model_'
|
| 63 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 64 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
| 65 |
+
model.eval()
|
| 66 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 67 |
+
model.to(device)
|
| 68 |
+
# Load model and tokenizer from the drive
|
| 69 |
+
model_sentiment_path = './fine_tuned_roberta_for_sentiment_analysis_2000_'
|
| 70 |
+
tokenizer_sentiment = AutoTokenizer.from_pretrained(model_sentiment_path)
|
| 71 |
+
model_sentiment = AutoModelForSequenceClassification.from_pretrained(model_sentiment_path)
|
| 72 |
+
model_sentiment.eval()
|
| 73 |
+
model_sentiment.to(device)
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
model_name_or_path = "TheBloke/Llama-2-13B-chat-GGML"
|
| 77 |
+
model_basename = "llama-2-13b-chat.ggmlv3.q5_1.bin" # The model is in bin format
|
| 78 |
+
|
| 79 |
+
# Download the model file
|
| 80 |
+
model_path_llama = hf_hub_download(repo_id=model_name_or_path, filename=model_basename)
|
| 81 |
+
|
| 82 |
+
# Initialize the Llama model with appropriate settings for GPU
|
| 83 |
+
lcpp_llm = Llama(
|
| 84 |
+
model_path=model_path_llama,
|
| 85 |
+
n_threads=2, # CPU cores to use
|
| 86 |
+
n_batch=512, # Batch size for processing; adjust as per your VRAM capacity
|
| 87 |
+
n_gpu_layers=32 # Number of layers to run on GPU, dependent on your GPU's VRAM
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
def generate_email_response(email_prompt):
|
| 91 |
+
# Check input received by the function
|
| 92 |
+
print("Received prompt:", email_prompt)
|
| 93 |
+
|
| 94 |
+
# Determine if the input is a shorthand command or an actual email
|
| 95 |
+
if 'email to' in email_prompt.lower():
|
| 96 |
+
# Assume it's a shorthand command, format appropriately
|
| 97 |
+
formatted_prompt = f'''
|
| 98 |
+
Email received: "{email_prompt}"
|
| 99 |
+
Respond to this email, ensuring a professional tone, providing a concise update, and addressing any potential concerns the sender might have.
|
| 100 |
+
Response:
|
| 101 |
+
'''
|
| 102 |
+
else:
|
| 103 |
+
# Assume it's direct email content
|
| 104 |
+
formatted_prompt = f'''
|
| 105 |
+
Email received: "{email_prompt}"
|
| 106 |
+
Respond to this email, ensuring a professional tone, providing a concise update, and addressing any potential concerns the sender might have.
|
| 107 |
+
Response:
|
| 108 |
+
'''
|
| 109 |
+
|
| 110 |
+
# Generate response using Llama-2 model
|
| 111 |
+
try:
|
| 112 |
+
response = lcpp_llm(
|
| 113 |
+
prompt=formatted_prompt,
|
| 114 |
+
max_tokens=256,
|
| 115 |
+
temperature=0.5,
|
| 116 |
+
top_p=0.95,
|
| 117 |
+
repeat_penalty=1.2,
|
| 118 |
+
top_k=150,
|
| 119 |
+
echo=True
|
| 120 |
+
)
|
| 121 |
+
generated_response = response["choices"][0]["text"]
|
| 122 |
+
# Remove the input part from the output if it is included
|
| 123 |
+
if formatted_prompt in generated_response:
|
| 124 |
+
generated_response = generated_response.replace(formatted_prompt, '').strip()
|
| 125 |
+
print("Generated response:", generated_response)
|
| 126 |
+
return generated_response
|
| 127 |
+
except Exception as e:
|
| 128 |
+
print("Error in response generation:", str(e))
|
| 129 |
+
return "Failed to generate response, please check the console for errors."
|
| 130 |
+
|
| 131 |
+
def classify_sentiment(text):
|
| 132 |
+
# Encode the text using the tokenizer
|
| 133 |
+
inputs = tokenizer_sentiment(text, return_tensors="pt", truncation=True, max_length=512, padding=True)
|
| 134 |
+
input_ids = inputs['input_ids'].to(device)
|
| 135 |
+
attention_mask = inputs['attention_mask'].to(device)
|
| 136 |
+
|
| 137 |
+
# Get model predictions
|
| 138 |
+
with torch.no_grad():
|
| 139 |
+
outputs = model_sentiment(input_ids=input_ids, attention_mask=attention_mask)
|
| 140 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=1)
|
| 141 |
+
|
| 142 |
+
# Convert predictions to probabilities and sentiment category
|
| 143 |
+
probabilities = predictions.cpu().numpy()[0]
|
| 144 |
+
categories = ["Positive", "Neutral", "Negative"]
|
| 145 |
+
predicted_sentiment = categories[probabilities.argmax()]
|
| 146 |
+
|
| 147 |
+
# Return the predicted sentiment and the confidence
|
| 148 |
+
confidence = max(probabilities)
|
| 149 |
+
return f"Sentiment: {predicted_sentiment}, Confidence: {confidence:.2f}"
|
| 150 |
+
|
| 151 |
+
def generate_summary(email_text):
|
| 152 |
+
return summarize_email_conditional(email_text, summarizer)
|
| 153 |
+
|
| 154 |
+
def display_entities(email_text):
|
| 155 |
+
try:
|
| 156 |
+
results = extract_entities(email_text, nlp, ner_pipeline)
|
| 157 |
+
|
| 158 |
+
# Convert to DataFrames
|
| 159 |
+
data_spacy = pd.DataFrame(results['spaCy Entities'])
|
| 160 |
+
data_transformer = pd.DataFrame(results['Transformer Entities'])
|
| 161 |
+
|
| 162 |
+
return data_spacy, data_transformer, ", ".join(results['Dates'])
|
| 163 |
+
except Exception as e:
|
| 164 |
+
print(f"Error: {e}")
|
| 165 |
+
# Return empty outputs in case of error
|
| 166 |
+
return pd.DataFrame(), pd.DataFrame(), ""
|
| 167 |
+
|
| 168 |
+
def classify_email(email):
|
| 169 |
+
# Encode the email text using the tokenizer
|
| 170 |
+
inputs = tokenizer(email, return_tensors="pt", truncation=True, max_length=512, padding=True)
|
| 171 |
+
input_ids = inputs['input_ids'].to(device)
|
| 172 |
+
attention_mask = inputs['attention_mask'].to(device)
|
| 173 |
+
|
| 174 |
+
# Get model predictions
|
| 175 |
+
with torch.no_grad():
|
| 176 |
+
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
| 177 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=1)
|
| 178 |
+
|
| 179 |
+
# Convert predictions to probabilities and category
|
| 180 |
+
probabilities = predictions.cpu().numpy()[0]
|
| 181 |
+
categories = ["Urgent Requests", "Project Updates", "Client Communications", "Meeting Coordination", "Internal Announcements"]
|
| 182 |
+
predicted_category = categories[probabilities.argmax()]
|
| 183 |
+
|
| 184 |
+
# Return the predicted category and the confidence
|
| 185 |
+
confidence = max(probabilities)
|
| 186 |
+
return f"Category: {predicted_category}, Confidence: {confidence:.2f}"
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
iface_category = gr.Interface(
|
| 190 |
+
fn=classify_email,
|
| 191 |
+
inputs=gr.Textbox(lines=10, placeholder="Enter Email Content Here..."),
|
| 192 |
+
outputs="text",
|
| 193 |
+
title="Email Category Classifier",
|
| 194 |
+
description="This model classifies email text into one of five categories: Urgent Requests, Project Updates, Client Communications, Meeting Coordination, Internal Announcements."
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
iface_sentiment = gr.Interface(
|
| 199 |
+
fn=classify_sentiment,
|
| 200 |
+
inputs=gr.Textbox(lines=5, placeholder="Enter Email Text Here..."),
|
| 201 |
+
outputs=gr.Textbox(label="Sentiment Analysis"),
|
| 202 |
+
title="Sentiment Analysis"
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
iface_summary = gr.Interface(
|
| 207 |
+
fn=generate_summary,
|
| 208 |
+
inputs=[gr.Textbox(lines=5, placeholder="Enter Email Text Here...")],
|
| 209 |
+
outputs=gr.Textbox(label="Generated Summary"),
|
| 210 |
+
title="Summary Generation"
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
iface_ner = gr.Interface(
|
| 214 |
+
fn=display_entities,
|
| 215 |
+
inputs=gr.Textbox(lines=5, placeholder="Enter Email Text Here..."),
|
| 216 |
+
outputs=[
|
| 217 |
+
gr.Dataframe(label="spaCy Entity Recognition"),
|
| 218 |
+
gr.Dataframe(label="Transformer Entity Recognition"),
|
| 219 |
+
gr.Textbox(label="Extracted Dates")
|
| 220 |
+
],
|
| 221 |
+
title="NER Analysis",
|
| 222 |
+
description="Performs Named Entity Recognition using spaCy and Transformer models."
|
| 223 |
+
)
|
| 224 |
+
iface_response = gr.Interface(
|
| 225 |
+
fn=generate_email_response,
|
| 226 |
+
inputs=gr.Textbox(lines=10, placeholder="Enter the email prompt..."),
|
| 227 |
+
outputs=gr.Textbox(label="Generated Email Response"),
|
| 228 |
+
title="Email Response Generator",
|
| 229 |
+
description="Generate email responses using Llama-2 model."
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
# Using tabs to organize the interfaces
|
| 233 |
+
tabs = gr.TabbedInterface([iface_category, iface_sentiment,iface_summary,iface_ner,iface_response], ["Category", "Sentiment"," Summary","NER","Response Generator"], css=custom_css)
|
| 234 |
+
tabs.launch(share=True)
|
| 235 |
|
|
|
|
|
|
key_info.py
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spacy
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
import re
|
| 4 |
+
from dateutil.parser import parse
|
| 5 |
+
|
| 6 |
+
# Regex pattern for dates
|
| 7 |
+
def extract_entities(email_text, nlp, ner_pipeline):
|
| 8 |
+
date_pattern = r'\b(?:Jan(?:uary)?|Feb(?:ruary)?|Mar(?:ch)?|Apr(?:il)?|May|Jun(?:e)?|Jul(?:y)?|Aug(?:ust)?|Sep(?:tember)?|Oct(?:ober)?|Nov(?:ember)?|Dec(?:ember)?)\s+\d{1,2}(?:th|st|nd|rd)?,\s+\d{4}\b'
|
| 9 |
+
# Use spaCy for initial extraction
|
| 10 |
+
doc = nlp(email_text)
|
| 11 |
+
spacy_entities = [{"Text": ent.text, "Type": ent.label_} for ent in doc.ents]
|
| 12 |
+
|
| 13 |
+
# Use transformer model for refined extraction
|
| 14 |
+
transformer_entities = ner_pipeline(email_text)
|
| 15 |
+
transformer_entities = [{"Text": ent['word'], "Type": ent['entity'], "Score": ent['score']} for ent in transformer_entities if ent['score'] > 0.75]
|
| 16 |
+
|
| 17 |
+
# Extract dates using regex
|
| 18 |
+
potential_dates = re.findall(date_pattern, email_text)
|
| 19 |
+
dates = [parse(date).strftime('%Y-%m-%d') for date in potential_dates]
|
| 20 |
+
|
| 21 |
+
return {
|
| 22 |
+
"spaCy Entities": spacy_entities,
|
| 23 |
+
"Transformer Entities": transformer_entities,
|
| 24 |
+
"Dates": dates
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
|
llama2_response_mail_generator.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub import hf_hub_download
|
| 2 |
+
|
| 3 |
+
from llama_cpp import Llama
|
| 4 |
+
|
| 5 |
+
model_name_or_path = "TheBloke/Llama-2-13B-chat-GGML"
|
| 6 |
+
model_basename = "llama-2-13b-chat.ggmlv3.q5_1.bin" # The model is in bin format
|
| 7 |
+
|
| 8 |
+
# Download the model file
|
| 9 |
+
model_path = hf_hub_download(repo_id=model_name_or_path, filename=model_basename)
|
| 10 |
+
|
| 11 |
+
# Initialize the Llama model with appropriate settings for GPU
|
| 12 |
+
lcpp_llm = Llama(
|
| 13 |
+
model_path=model_path,
|
| 14 |
+
n_threads=2, # CPU cores to use
|
| 15 |
+
n_batch=512, # Batch size for processing; adjust as per your VRAM capacity
|
| 16 |
+
n_gpu_layers=32 # Number of layers to run on GPU, dependent on your GPU's VRAM
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
def generate_email_response(email_prompt):
|
| 20 |
+
# Check input received by the function
|
| 21 |
+
print("Received prompt:", email_prompt)
|
| 22 |
+
|
| 23 |
+
# Determine if the input is a shorthand command or an actual email
|
| 24 |
+
if 'email to' in email_prompt.lower():
|
| 25 |
+
# Assume it's a shorthand command, format appropriately
|
| 26 |
+
formatted_prompt = f'''
|
| 27 |
+
Email received: "{email_prompt}"
|
| 28 |
+
Respond to this email, ensuring a professional tone, providing a concise update, and addressing any potential concerns the sender might have.
|
| 29 |
+
Response:
|
| 30 |
+
'''
|
| 31 |
+
else:
|
| 32 |
+
# Assume it's direct email content
|
| 33 |
+
formatted_prompt = f'''
|
| 34 |
+
Email received: "{email_prompt}"
|
| 35 |
+
Respond to this email, ensuring a professional tone, providing a concise update, and addressing any potential concerns the sender might have.
|
| 36 |
+
Response:
|
| 37 |
+
'''
|
| 38 |
+
|
| 39 |
+
# Generate response using Llama-2 model
|
| 40 |
+
try:
|
| 41 |
+
response = lcpp_llm(
|
| 42 |
+
prompt=formatted_prompt,
|
| 43 |
+
max_tokens=256,
|
| 44 |
+
temperature=0.5,
|
| 45 |
+
top_p=0.95,
|
| 46 |
+
repeat_penalty=1.2,
|
| 47 |
+
top_k=150,
|
| 48 |
+
echo=True
|
| 49 |
+
)
|
| 50 |
+
generated_response = response["choices"][0]["text"]
|
| 51 |
+
# Remove the input part from the output if it is included
|
| 52 |
+
if formatted_prompt in generated_response:
|
| 53 |
+
generated_response = generated_response.replace(formatted_prompt, '').strip()
|
| 54 |
+
print("Generated response:", generated_response)
|
| 55 |
+
return generated_response
|
| 56 |
+
except Exception as e:
|
| 57 |
+
print("Error in response generation:", str(e))
|
| 58 |
+
return "Failed to generate response, please check the console for errors."
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
datasets
|
| 3 |
+
torch
|
| 4 |
+
gradio
|
| 5 |
+
spacy
|
| 6 |
+
llama-cpp-python
|
| 7 |
+
numpy
|
| 8 |
+
huggingface_hub
|
| 9 |
+
##TODO python -m spacy download en_core_web_sm
|
summarization_with_bart.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import pipeline
|
| 2 |
+
|
| 3 |
+
def summarize_email_conditional(email_text, summarizer, min_input_length=50):
|
| 4 |
+
"""
|
| 5 |
+
Summarizes the email if it's longer than min_input_length.
|
| 6 |
+
Adjusts max_length parameter based on the length of the email.
|
| 7 |
+
|
| 8 |
+
Args:
|
| 9 |
+
- email_text (str): The text of the email to summarize.
|
| 10 |
+
- min_input_length (int): Minimum length of email to apply summarization.
|
| 11 |
+
|
| 12 |
+
Returns:
|
| 13 |
+
- str: The summary of the email or the original email if below the min_input_length.
|
| 14 |
+
"""
|
| 15 |
+
# Only summarize if the email is longer than min_input_length
|
| 16 |
+
if len(email_text.split()) > min_input_length:
|
| 17 |
+
# Dynamically set max_length to be about 75% of the email length, or any ratio that suits your need
|
| 18 |
+
max_length = max(12, int(len(email_text.split()) * 0.75))
|
| 19 |
+
summary = summarizer(email_text, max_length=max_length, min_length=5, do_sample=False)
|
| 20 |
+
return summary[0]['summary_text']
|
| 21 |
+
else:
|
| 22 |
+
# Return the original email text if it's not long enough to require summarization
|
| 23 |
+
return email_text
|
| 24 |
+
|