|
import spaces |
|
import gradio as gr |
|
from transformers import AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, LlavaForConditionalGeneration, TextIteratorStreamer |
|
import torch |
|
import torch.amp.autocast_mode |
|
from PIL import Image |
|
import torchvision.transforms.functional as TVF |
|
from threading import Thread |
|
from typing import Generator |
|
|
|
|
|
MODEL_PATH = "fancyfeast/llama-joycaption-alpha-two-vqa-test-1" |
|
TITLE = "<h1><center>JoyCaption Alpha Two - VQA Test - (2024-11-25a)</center></h1>" |
|
DESCRIPTION = """ |
|
<div> |
|
<p>π¨π¨π¨ BY USING THIS SPACE YOU AGREE THAT YOUR QUERIES (but not images) <i>MAY</i> BE LOGGED AND COLLECTED ANONYMOUSLY π¨π¨π¨</p> |
|
<p>π§ͺπ§ͺπ§ͺ This an experiment to see how well JoyCaption Alpha Two can learn to answer questions about images and follow instructions. |
|
I've only finetuned it on 600 examples, so it is highly experimental, very weak, broken, and volatile. But for only training 600 examples, |
|
I thought it was performing surprisingly well and wanted to share. π§ͺπ§ͺπ§ͺ</p> |
|
<p>Unlike JoyCaption Alpha Two, you can ask this finetune questions about the image, like "What is he holding in his hand?", "Where might this be?", |
|
and "What are they doing?". It can also follow instructions, like "Write me a poem about this image", |
|
"Write a caption but don't use any ambigious language, and make sure you mention that the image is from Instagram.", and |
|
"Output JSON with the following properties: 'skin_tone', 'hair_style', 'hair_length', 'clothing', 'background'." Remember that this was only finetuned on |
|
600 VQA/instruction examples, so it is _very_ limited right now. Expect it to frequently fallback to its base behavior of just writing image descriptions. |
|
Expect accuracy to be lower. Expect glitches. Despite that, I've found that it will follow most queries I've tested it with, even outside its training, |
|
with enough coaxing and re-rolling.</p> |
|
<p>About the π¨π¨π¨ above: this space will log all prompts sent to it. The only thing this space logs is the text query; no images, no user data, etc. |
|
I cannot see what images you send, and frankly, I don't want to. But knowing what kinds of instructions and queries users want JoyCaption to handle will |
|
help guide me in building JoyCaption's VQA dataset. I've found out the hard way that almost all public VQA datasets are garbage and don't do a good job of |
|
training and exercising visual understanding. Certainly not good enough to handle the complicated instructions that will allow JoyCaption users to guide and |
|
direct how JoyCaption writes descriptions and captions. So I'm building my own dataset, that will be made public. So, with peace and love, this space logs the text |
|
queries. As always, the model itself is completely public and free to use outside of this space. And, of course, I have no control nor access to what HuggingFace, |
|
which are graciously hosting this space, log.</p> |
|
</div> |
|
""" |
|
|
|
PLACEHOLDER = """ |
|
""" |
|
|
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=True) |
|
assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Expected PreTrainedTokenizer, got {type(tokenizer)}" |
|
|
|
model = LlavaForConditionalGeneration.from_pretrained(MODEL_PATH, torch_dtype="bfloat16", device_map=0) |
|
assert isinstance(model, LlavaForConditionalGeneration), f"Expected LlavaForConditionalGeneration, got {type(model)}" |
|
|
|
|
|
def trim_off_prompt(input_ids: list[int], eoh_id: int, eot_id: int) -> list[int]: |
|
|
|
while True: |
|
try: |
|
i = input_ids.index(eoh_id) |
|
except ValueError: |
|
break |
|
|
|
input_ids = input_ids[i + 1:] |
|
|
|
|
|
try: |
|
i = input_ids.index(eot_id) |
|
except ValueError: |
|
return input_ids |
|
|
|
return input_ids[:i] |
|
|
|
end_of_header_id = tokenizer.convert_tokens_to_ids("<|end_header_id|>") |
|
end_of_turn_id = tokenizer.convert_tokens_to_ids("<|eot_id|>") |
|
assert isinstance(end_of_header_id, int) and isinstance(end_of_turn_id, int) |
|
|
|
|
|
@spaces.GPU() |
|
@torch.no_grad() |
|
def chat_joycaption(message: dict, history, temperature: float, max_new_tokens: int) -> Generator[str, None, None]: |
|
torch.cuda.empty_cache() |
|
|
|
print(message) |
|
|
|
|
|
prompt = message['text'].strip() |
|
|
|
|
|
if "files" not in message or len(message["files"]) != 1: |
|
yield "ERROR: This model requires exactly one image as input." |
|
return |
|
|
|
image = Image.open(message["files"][0]) |
|
|
|
|
|
print(f"Prompt: {prompt}") |
|
|
|
|
|
|
|
if image.size != (384, 384): |
|
image = image.resize((384, 384), Image.LANCZOS) |
|
image = image.convert("RGB") |
|
pixel_values = TVF.pil_to_tensor(image) |
|
|
|
convo = [ |
|
{ |
|
"role": "system", |
|
"content": "You are a helpful image captioner.", |
|
}, |
|
{ |
|
"role": "user", |
|
"content": prompt, |
|
}, |
|
] |
|
|
|
|
|
convo_string = tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = True) |
|
assert isinstance(convo_string, str) |
|
|
|
|
|
convo_tokens = tokenizer.encode(convo_string, add_special_tokens=False, truncation=False) |
|
|
|
|
|
input_tokens = [] |
|
for token in convo_tokens: |
|
if token == model.config.image_token_index: |
|
input_tokens.extend([model.config.image_token_index] * model.config.image_seq_length) |
|
else: |
|
input_tokens.append(token) |
|
|
|
input_ids = torch.tensor(input_tokens, dtype=torch.long) |
|
attention_mask = torch.ones_like(input_ids) |
|
|
|
|
|
input_ids = input_ids.unsqueeze(0).to("cuda") |
|
attention_mask = attention_mask.unsqueeze(0).to("cuda") |
|
pixel_values = pixel_values.unsqueeze(0).to("cuda") |
|
|
|
|
|
pixel_values = pixel_values / 255.0 |
|
pixel_values = TVF.normalize(pixel_values, [0.5], [0.5]) |
|
pixel_values = pixel_values.to(torch.bfloat16) |
|
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) |
|
|
|
generate_kwargs = dict( |
|
input_ids=input_ids, |
|
pixel_values=pixel_values, |
|
attention_mask=attention_mask, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=True, |
|
suppress_tokens=None, |
|
use_cache=True, |
|
temperature=temperature, |
|
top_k=None, |
|
top_p=0.9, |
|
streamer=streamer, |
|
) |
|
|
|
if temperature == 0: |
|
generate_kwargs["do_sample"] = False |
|
|
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
|
|
outputs = [] |
|
for text in streamer: |
|
outputs.append(text) |
|
yield "".join(outputs) |
|
|
|
|
|
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface', type="messages") |
|
textbox = gr.MultimodalTextbox(file_types=["image"], file_count="single") |
|
|
|
with gr.Blocks() as demo: |
|
gr.HTML(TITLE) |
|
gr.Markdown(DESCRIPTION) |
|
gr.ChatInterface( |
|
fn=chat_joycaption, |
|
chatbot=chatbot, |
|
type="messages", |
|
fill_height=True, |
|
multimodal=True, |
|
textbox=textbox, |
|
additional_inputs_accordion=None, |
|
additional_inputs=[ |
|
gr.Slider(minimum=0, |
|
maximum=1, |
|
step=0.1, |
|
value=0.6, |
|
label="Temperature", |
|
render=False), |
|
gr.Slider(minimum=128, |
|
maximum=4096, |
|
step=1, |
|
value=1024, |
|
label="Max new tokens", |
|
render=False ), |
|
], |
|
examples=[ |
|
['How to setup a human base on Mars? Give short answer.'], |
|
['Explain theory of relativity to me like Iβm 8 years old.'], |
|
['What is 9,000 * 9,000?'], |
|
['Write a pun-filled happy birthday message to my friend Alex.'], |
|
['Justify why a penguin might make a good king of the jungle.'] |
|
], |
|
cache_examples=False, |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |