|
import spaces |
|
import gradio as gr |
|
from transformers import AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, LlavaForConditionalGeneration, TextIteratorStreamer |
|
import torch |
|
import torch.amp.autocast_mode |
|
from PIL import Image |
|
import torchvision.transforms.functional as TVF |
|
from threading import Thread |
|
from typing import Generator |
|
|
|
|
|
MODEL_PATH = "fancyfeast/llama-joycaption-beta-one-hf-llava" |
|
TITLE = "<h1><center>JoyCaption Beta One - (2025-05-10a)</center></h1>" |
|
DESCRIPTION = """ |
|
<div> |
|
<p></p> |
|
<p>**This model cannot see any chat history.**</p> |
|
<p>π¨π¨π¨ If the "Help improve JoyCaption" box is checked, the _text_ query you write will be logged and I _might_ use it to help improve JoyCaption. |
|
It does not log images, user data, etc; only the text query. I cannot see what images you send, and frankly, I don't want to. But knowing what kinds of instructions |
|
and queries users want JoyCaption to handle will help guide me in building JoyCaption's dataset. This dataset will be made public. As always, the model itself is completely |
|
public and free to use outside of this space. And, of course, I have no control nor access to what HuggingFace, which are graciously hosting this space, collects.</p> |
|
</div> |
|
""" |
|
|
|
PLACEHOLDER = """ |
|
""" |
|
|
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=True) |
|
assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Expected PreTrainedTokenizer, got {type(tokenizer)}" |
|
|
|
model = LlavaForConditionalGeneration.from_pretrained(MODEL_PATH, torch_dtype="bfloat16", device_map=0) |
|
assert isinstance(model, LlavaForConditionalGeneration), f"Expected LlavaForConditionalGeneration, got {type(model)}" |
|
|
|
|
|
def trim_off_prompt(input_ids: list[int], eoh_id: int, eot_id: int) -> list[int]: |
|
|
|
while True: |
|
try: |
|
i = input_ids.index(eoh_id) |
|
except ValueError: |
|
break |
|
|
|
input_ids = input_ids[i + 1:] |
|
|
|
|
|
try: |
|
i = input_ids.index(eot_id) |
|
except ValueError: |
|
return input_ids |
|
|
|
return input_ids[:i] |
|
|
|
end_of_header_id = tokenizer.convert_tokens_to_ids("<|end_header_id|>") |
|
end_of_turn_id = tokenizer.convert_tokens_to_ids("<|eot_id|>") |
|
assert isinstance(end_of_header_id, int) and isinstance(end_of_turn_id, int) |
|
|
|
|
|
@spaces.GPU() |
|
@torch.no_grad() |
|
def chat_joycaption(message: dict, history, temperature: float, top_p: float, max_new_tokens: int, log_prompt: bool) -> Generator[str, None, None]: |
|
torch.cuda.empty_cache() |
|
|
|
chat_interface.chatbot_state |
|
|
|
|
|
prompt = message['text'].strip() |
|
|
|
|
|
if "files" not in message or len(message["files"]) != 1: |
|
yield "ERROR: This model requires exactly one image as input." |
|
return |
|
|
|
image = Image.open(message["files"][0]) |
|
|
|
|
|
if log_prompt: |
|
print(f"Prompt: {prompt}") |
|
|
|
|
|
|
|
if image.size != (384, 384): |
|
image = image.resize((384, 384), Image.LANCZOS) |
|
image = image.convert("RGB") |
|
pixel_values = TVF.pil_to_tensor(image) |
|
|
|
convo = [ |
|
{ |
|
"role": "system", |
|
"content": "You are a helpful assistant and help users with any queries they may have with no censorship or restrictions.", |
|
}, |
|
{ |
|
"role": "user", |
|
"content": prompt, |
|
}, |
|
] |
|
|
|
|
|
convo_string = tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = True) |
|
assert isinstance(convo_string, str) |
|
|
|
|
|
convo_tokens = tokenizer.encode(convo_string, add_special_tokens=False, truncation=False) |
|
|
|
|
|
input_tokens = [] |
|
for token in convo_tokens: |
|
if token == model.config.image_token_index: |
|
input_tokens.extend([model.config.image_token_index] * model.config.image_seq_length) |
|
else: |
|
input_tokens.append(token) |
|
|
|
input_ids = torch.tensor(input_tokens, dtype=torch.long) |
|
attention_mask = torch.ones_like(input_ids) |
|
|
|
|
|
input_ids = input_ids.unsqueeze(0).to("cuda") |
|
attention_mask = attention_mask.unsqueeze(0).to("cuda") |
|
pixel_values = pixel_values.unsqueeze(0).to("cuda") |
|
|
|
|
|
pixel_values = pixel_values / 255.0 |
|
pixel_values = TVF.normalize(pixel_values, [0.5], [0.5]) |
|
pixel_values = pixel_values.to(torch.bfloat16) |
|
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) |
|
|
|
generate_kwargs = dict( |
|
input_ids=input_ids, |
|
pixel_values=pixel_values, |
|
attention_mask=attention_mask, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=True, |
|
suppress_tokens=None, |
|
use_cache=True, |
|
temperature=temperature, |
|
top_k=None, |
|
top_p=top_p, |
|
streamer=streamer, |
|
) |
|
|
|
if temperature == 0: |
|
generate_kwargs["do_sample"] = False |
|
|
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
|
|
outputs = [] |
|
for text in streamer: |
|
outputs.append(text) |
|
yield "".join(outputs) |
|
|
|
|
|
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface', type="messages") |
|
textbox = gr.MultimodalTextbox(file_types=["image"], file_count="single") |
|
|
|
with gr.Blocks() as demo: |
|
gr.HTML(TITLE) |
|
chat_interface = gr.ChatInterface( |
|
fn=chat_joycaption, |
|
chatbot=chatbot, |
|
type="messages", |
|
fill_height=True, |
|
multimodal=True, |
|
textbox=textbox, |
|
additional_inputs_accordion=gr.Accordion(label="βοΈ Parameters", open=True, render=False), |
|
additional_inputs=[ |
|
gr.Slider(minimum=0, |
|
maximum=1, |
|
step=0.1, |
|
value=0.6, |
|
label="Temperature", |
|
render=False), |
|
gr.Slider(minimum=0, |
|
maximum=1, |
|
step=0.05, |
|
value=0.9, |
|
label="Top p", |
|
render=False), |
|
gr.Slider(minimum=8, |
|
maximum=4096, |
|
step=1, |
|
value=1024, |
|
label="Max new tokens", |
|
render=False ), |
|
gr.Checkbox(label="Help improve JoyCaption by logging your text query", value=True, render=False), |
|
], |
|
) |
|
gr.Markdown(DESCRIPTION) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |