Spaces:
Sleeping
Sleeping
Delete 02-saving-a-basic-fastai-model.ipynb
Browse files
02-saving-a-basic-fastai-model.ipynb
DELETED
|
@@ -1,216 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cells": [
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "markdown",
|
| 5 |
-
"metadata": {
|
| 6 |
-
"id": "98d53c05"
|
| 7 |
-
},
|
| 8 |
-
"source": [
|
| 9 |
-
"## Saving a Cats v Dogs Model"
|
| 10 |
-
]
|
| 11 |
-
},
|
| 12 |
-
{
|
| 13 |
-
"cell_type": "markdown",
|
| 14 |
-
"metadata": {},
|
| 15 |
-
"source": [
|
| 16 |
-
"This is a minimal example showing how to train a fastai model on Kaggle, and save it so you can use it in your app."
|
| 17 |
-
]
|
| 18 |
-
},
|
| 19 |
-
{
|
| 20 |
-
"cell_type": "code",
|
| 21 |
-
"execution_count": null,
|
| 22 |
-
"metadata": {
|
| 23 |
-
"_kg_hide-input": true,
|
| 24 |
-
"_kg_hide-output": true,
|
| 25 |
-
"execution": {
|
| 26 |
-
"iopub.execute_input": "2022-05-03T05:51:37.949032Z",
|
| 27 |
-
"iopub.status.busy": "2022-05-03T05:51:37.948558Z",
|
| 28 |
-
"iopub.status.idle": "2022-05-03T05:51:59.531217Z",
|
| 29 |
-
"shell.execute_reply": "2022-05-03T05:51:59.530294Z",
|
| 30 |
-
"shell.execute_reply.started": "2022-05-03T05:51:37.948947Z"
|
| 31 |
-
},
|
| 32 |
-
"id": "evvA0fqvSblq",
|
| 33 |
-
"outputId": "ba21b811-767c-459a-ccdf-044758720a55"
|
| 34 |
-
},
|
| 35 |
-
"outputs": [],
|
| 36 |
-
"source": [
|
| 37 |
-
"# Make sure we've got the latest version of fastai:\n",
|
| 38 |
-
"!pip install -Uqq fastai"
|
| 39 |
-
]
|
| 40 |
-
},
|
| 41 |
-
{
|
| 42 |
-
"cell_type": "markdown",
|
| 43 |
-
"metadata": {},
|
| 44 |
-
"source": [
|
| 45 |
-
"First, import all the stuff we need from fastai:"
|
| 46 |
-
]
|
| 47 |
-
},
|
| 48 |
-
{
|
| 49 |
-
"cell_type": "code",
|
| 50 |
-
"execution_count": null,
|
| 51 |
-
"metadata": {
|
| 52 |
-
"execution": {
|
| 53 |
-
"iopub.execute_input": "2022-05-03T05:51:59.534478Z",
|
| 54 |
-
"iopub.status.busy": "2022-05-03T05:51:59.533878Z",
|
| 55 |
-
"iopub.status.idle": "2022-05-03T05:52:02.177975Z",
|
| 56 |
-
"shell.execute_reply": "2022-05-03T05:52:02.177267Z",
|
| 57 |
-
"shell.execute_reply.started": "2022-05-03T05:51:59.534432Z"
|
| 58 |
-
},
|
| 59 |
-
"id": "44eb0ad3"
|
| 60 |
-
},
|
| 61 |
-
"outputs": [],
|
| 62 |
-
"source": [
|
| 63 |
-
"from fastai.vision.all import *"
|
| 64 |
-
]
|
| 65 |
-
},
|
| 66 |
-
{
|
| 67 |
-
"cell_type": "markdown",
|
| 68 |
-
"metadata": {},
|
| 69 |
-
"source": [
|
| 70 |
-
"Download and decompress our dataset, which is pictures of dogs and cats:"
|
| 71 |
-
]
|
| 72 |
-
},
|
| 73 |
-
{
|
| 74 |
-
"cell_type": "code",
|
| 75 |
-
"execution_count": null,
|
| 76 |
-
"metadata": {
|
| 77 |
-
"execution": {
|
| 78 |
-
"iopub.execute_input": "2022-05-03T05:52:02.180691Z",
|
| 79 |
-
"iopub.status.busy": "2022-05-03T05:52:02.180192Z",
|
| 80 |
-
"iopub.status.idle": "2022-05-03T05:53:02.465242Z",
|
| 81 |
-
"shell.execute_reply": "2022-05-03T05:53:02.464516Z",
|
| 82 |
-
"shell.execute_reply.started": "2022-05-03T05:52:02.180651Z"
|
| 83 |
-
}
|
| 84 |
-
},
|
| 85 |
-
"outputs": [],
|
| 86 |
-
"source": [
|
| 87 |
-
"path = untar_data(URLs.PETS)/'images'"
|
| 88 |
-
]
|
| 89 |
-
},
|
| 90 |
-
{
|
| 91 |
-
"cell_type": "markdown",
|
| 92 |
-
"metadata": {},
|
| 93 |
-
"source": [
|
| 94 |
-
"We need a way to label our images as dogs or cats. In this dataset, pictures of cats are given a filename that starts with a capital letter:"
|
| 95 |
-
]
|
| 96 |
-
},
|
| 97 |
-
{
|
| 98 |
-
"cell_type": "code",
|
| 99 |
-
"execution_count": null,
|
| 100 |
-
"metadata": {
|
| 101 |
-
"execution": {
|
| 102 |
-
"iopub.execute_input": "2022-05-03T05:53:02.467572Z",
|
| 103 |
-
"iopub.status.busy": "2022-05-03T05:53:02.467289Z",
|
| 104 |
-
"iopub.status.idle": "2022-05-03T05:53:02.474701Z",
|
| 105 |
-
"shell.execute_reply": "2022-05-03T05:53:02.474109Z",
|
| 106 |
-
"shell.execute_reply.started": "2022-05-03T05:53:02.467536Z"
|
| 107 |
-
},
|
| 108 |
-
"id": "44eb0ad3"
|
| 109 |
-
},
|
| 110 |
-
"outputs": [],
|
| 111 |
-
"source": [
|
| 112 |
-
"def is_cat(x): return x[0].isupper() "
|
| 113 |
-
]
|
| 114 |
-
},
|
| 115 |
-
{
|
| 116 |
-
"cell_type": "markdown",
|
| 117 |
-
"metadata": {},
|
| 118 |
-
"source": [
|
| 119 |
-
"Now we can create our `DataLoaders`:"
|
| 120 |
-
]
|
| 121 |
-
},
|
| 122 |
-
{
|
| 123 |
-
"cell_type": "code",
|
| 124 |
-
"execution_count": null,
|
| 125 |
-
"metadata": {
|
| 126 |
-
"execution": {
|
| 127 |
-
"iopub.execute_input": "2022-05-03T05:53:02.476084Z",
|
| 128 |
-
"iopub.status.busy": "2022-05-03T05:53:02.475754Z",
|
| 129 |
-
"iopub.status.idle": "2022-05-03T05:53:06.703777Z",
|
| 130 |
-
"shell.execute_reply": "2022-05-03T05:53:06.703023Z",
|
| 131 |
-
"shell.execute_reply.started": "2022-05-03T05:53:02.476052Z"
|
| 132 |
-
},
|
| 133 |
-
"id": "44eb0ad3"
|
| 134 |
-
},
|
| 135 |
-
"outputs": [],
|
| 136 |
-
"source": [
|
| 137 |
-
"dls = ImageDataLoaders.from_name_func('.',\n",
|
| 138 |
-
" get_image_files(path), valid_pct=0.2, seed=42,\n",
|
| 139 |
-
" label_func=is_cat,\n",
|
| 140 |
-
" item_tfms=Resize(192))"
|
| 141 |
-
]
|
| 142 |
-
},
|
| 143 |
-
{
|
| 144 |
-
"cell_type": "markdown",
|
| 145 |
-
"metadata": {},
|
| 146 |
-
"source": [
|
| 147 |
-
"... and train our model, a resnet18 (to keep it small and fast):"
|
| 148 |
-
]
|
| 149 |
-
},
|
| 150 |
-
{
|
| 151 |
-
"cell_type": "code",
|
| 152 |
-
"execution_count": null,
|
| 153 |
-
"metadata": {
|
| 154 |
-
"execution": {
|
| 155 |
-
"iopub.execute_input": "2022-05-03T05:53:28.093059Z",
|
| 156 |
-
"iopub.status.busy": "2022-05-03T05:53:28.092381Z"
|
| 157 |
-
},
|
| 158 |
-
"id": "c107f724",
|
| 159 |
-
"outputId": "fcc1de68-7c8b-43f5-b9eb-fcdb0773ef07"
|
| 160 |
-
},
|
| 161 |
-
"outputs": [],
|
| 162 |
-
"source": [
|
| 163 |
-
"learn = vision_learner(dls, resnet18, metrics=error_rate)\n",
|
| 164 |
-
"learn.fine_tune(3)"
|
| 165 |
-
]
|
| 166 |
-
},
|
| 167 |
-
{
|
| 168 |
-
"cell_type": "markdown",
|
| 169 |
-
"metadata": {},
|
| 170 |
-
"source": [
|
| 171 |
-
"Now we can export our trained `Learner`. This contains all the information needed to run the model:"
|
| 172 |
-
]
|
| 173 |
-
},
|
| 174 |
-
{
|
| 175 |
-
"cell_type": "code",
|
| 176 |
-
"execution_count": null,
|
| 177 |
-
"metadata": {
|
| 178 |
-
"id": "ae2bc6ac"
|
| 179 |
-
},
|
| 180 |
-
"outputs": [],
|
| 181 |
-
"source": [
|
| 182 |
-
"learn.export('model.pkl')"
|
| 183 |
-
]
|
| 184 |
-
},
|
| 185 |
-
{
|
| 186 |
-
"cell_type": "markdown",
|
| 187 |
-
"metadata": {
|
| 188 |
-
"id": "Q2HTrQKTf3BV"
|
| 189 |
-
},
|
| 190 |
-
"source": [
|
| 191 |
-
"Finally, open the Kaggle sidebar on the right if it's not already, and find the section marked \"Output\". Open the `/kaggle/working` folder, and you'll see `model.pkl`. Click on it, then click on the menu on the right that appears, and choose \"Download\". After a few seconds, your model will be downloaded to your computer, where you can then create your app that uses the model."
|
| 192 |
-
]
|
| 193 |
-
}
|
| 194 |
-
],
|
| 195 |
-
"metadata": {
|
| 196 |
-
"kernelspec": {
|
| 197 |
-
"display_name": "Python 3 (ipykernel)",
|
| 198 |
-
"language": "python",
|
| 199 |
-
"name": "python3"
|
| 200 |
-
},
|
| 201 |
-
"language_info": {
|
| 202 |
-
"codemirror_mode": {
|
| 203 |
-
"name": "ipython",
|
| 204 |
-
"version": 3
|
| 205 |
-
},
|
| 206 |
-
"file_extension": ".py",
|
| 207 |
-
"mimetype": "text/x-python",
|
| 208 |
-
"name": "python",
|
| 209 |
-
"nbconvert_exporter": "python",
|
| 210 |
-
"pygments_lexer": "ipython3",
|
| 211 |
-
"version": "3.8.16"
|
| 212 |
-
}
|
| 213 |
-
},
|
| 214 |
-
"nbformat": 4,
|
| 215 |
-
"nbformat_minor": 4
|
| 216 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|