hyungjoochae iruno commited on
Commit
1650939
·
verified ·
1 Parent(s): d5eccc1

- update (53214c0902c5bc6a66e7b9dd3ec470450acacc84)


Co-authored-by: iruno <iruno@users.noreply.huggingface.co>

This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitignore +6 -1
  2. BrowserGym/browsergym/assistantbench/src/browsergym/assistantbench/task.py +1 -1
  3. BrowserGym/browsergym/browsergym.egg-info/PKG-INFO +22 -0
  4. BrowserGym/browsergym/browsergym.egg-info/SOURCES.txt +6 -0
  5. BrowserGym/browsergym/browsergym.egg-info/dependency_links.txt +1 -0
  6. BrowserGym/browsergym/browsergym.egg-info/requires.txt +8 -0
  7. BrowserGym/browsergym/browsergym.egg-info/top_level.txt +1 -0
  8. BrowserGym/browsergym/core/src/browsergym/core/__pycache__/__init__.cpython-311.pyc +0 -0
  9. BrowserGym/browsergym/core/src/browsergym/core/__pycache__/chat.cpython-311.pyc +0 -0
  10. BrowserGym/browsergym/core/src/browsergym/core/__pycache__/constants.cpython-311.pyc +0 -0
  11. BrowserGym/browsergym/core/src/browsergym/core/__pycache__/env.cpython-311.pyc +0 -0
  12. BrowserGym/browsergym/core/src/browsergym/core/__pycache__/observation.cpython-311.pyc +0 -0
  13. BrowserGym/browsergym/core/src/browsergym/core/__pycache__/registration.cpython-311.pyc +0 -0
  14. BrowserGym/browsergym/core/src/browsergym/core/__pycache__/spaces.cpython-311.pyc +0 -0
  15. BrowserGym/browsergym/core/src/browsergym/core/__pycache__/task.cpython-311.pyc +0 -0
  16. BrowserGym/browsergym/core/src/browsergym/core/action/__pycache__/__init__.cpython-311.pyc +0 -0
  17. BrowserGym/browsergym/core/src/browsergym/core/action/__pycache__/base.cpython-311.pyc +0 -0
  18. BrowserGym/browsergym/core/src/browsergym/core/action/__pycache__/functions.cpython-311.pyc +0 -0
  19. BrowserGym/browsergym/core/src/browsergym/core/action/__pycache__/highlevel.cpython-311.pyc +0 -0
  20. BrowserGym/browsergym/core/src/browsergym/core/action/__pycache__/parsers.cpython-311.pyc +0 -0
  21. BrowserGym/browsergym/core/src/browsergym/core/action/__pycache__/utils.cpython-311.pyc +0 -0
  22. BrowserGym/browsergym/core/src/browsergym/core/env.py +4 -1
  23. BrowserGym/browsergym/core/src/browsergym/core/task.py +1 -1
  24. BrowserGym/browsergym/core/src/browsergym/utils/__pycache__/obs.cpython-311.pyc +0 -0
  25. BrowserGym/browsergym/experiments/src/browsergym/experiments/__pycache__/__init__.cpython-311.pyc +0 -0
  26. BrowserGym/browsergym/experiments/src/browsergym/experiments/__pycache__/agent.cpython-311.pyc +0 -0
  27. BrowserGym/browsergym/experiments/src/browsergym/experiments/__pycache__/loop.cpython-311.pyc +0 -0
  28. BrowserGym/browsergym/experiments/src/browsergym/experiments/__pycache__/utils.cpython-311.pyc +0 -0
  29. BrowserGym/browsergym/visualwebarena/src/browsergym/visualwebarena/task.py +1 -1
  30. BrowserGym/browsergym/webarena/src/browsergym/webarena/task.py +1 -1
  31. Dockerfile +8 -1
  32. agent/__init__.py +0 -0
  33. agent/checklist.py +18 -0
  34. agent/mini_bench/__init__.py +0 -0
  35. agent/mini_bench/__pycache__/__init__.cpython-311.pyc +0 -0
  36. agent/mini_bench/__pycache__/agent.cpython-311.pyc +0 -0
  37. agent/mini_bench/__pycache__/reward_agent.cpython-311.pyc +0 -0
  38. agent/mini_bench/agent.py +467 -0
  39. agent/mini_bench/checklist_eval.py +95 -0
  40. agent/mini_bench/eval_utils.py +309 -0
  41. agent/mini_bench/inference_utils.py +87 -0
  42. agent/mini_bench/prompts/__init__.py +1 -0
  43. agent/mini_bench/prompts/__pycache__/__init__.cpython-311.pyc +0 -0
  44. agent/mini_bench/prompts/__pycache__/action.cpython-311.pyc +0 -0
  45. agent/mini_bench/prompts/__pycache__/checklist_prompt.cpython-311.pyc +0 -0
  46. agent/mini_bench/prompts/__pycache__/construct_messages.cpython-311.pyc +0 -0
  47. agent/mini_bench/prompts/__pycache__/eval_type.cpython-311.pyc +0 -0
  48. agent/mini_bench/prompts/__pycache__/image_utils.cpython-311.pyc +0 -0
  49. agent/mini_bench/prompts/__pycache__/input_information.cpython-311.pyc +0 -0
  50. agent/mini_bench/prompts/__pycache__/judge_prompt.cpython-311.pyc +0 -0
.gitignore CHANGED
@@ -4,4 +4,9 @@
4
  *.gif
5
  *.bmp
6
  *.tiff
7
- *.ico
 
 
 
 
 
 
4
  *.gif
5
  *.bmp
6
  *.tiff
7
+ *.ico
8
+ *.log
9
+ .gradio/
10
+ __pycache__/
11
+ .env
12
+ .venv/
BrowserGym/browsergym/assistantbench/src/browsergym/assistantbench/task.py CHANGED
@@ -108,7 +108,7 @@ class AssistantBenchTask(AbstractBrowserTask):
108
 
109
  def setup(self, page: Page) -> Tuple[str, dict]:
110
  logger.info(f"Navigating to start url: {self.start_url}")
111
- page.goto(self.start_url, timeout=10000)
112
  if self.save_predictions and self.output_file:
113
  # create an empty task entry in the output file (will raise an Exception if the entry is already there)
114
  add_prediction_to_jsonl(
 
108
 
109
  def setup(self, page: Page) -> Tuple[str, dict]:
110
  logger.info(f"Navigating to start url: {self.start_url}")
111
+ page.goto(self.start_url, timeout=50000)
112
  if self.save_predictions and self.output_file:
113
  # create an empty task entry in the output file (will raise an Exception if the entry is already there)
114
  add_prediction_to_jsonl(
BrowserGym/browsergym/browsergym.egg-info/PKG-INFO ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Metadata-Version: 2.4
2
+ Name: browsergym
3
+ Version: 0.13.4
4
+ Summary: BrowserGym: a gym environment for web task automation in the Chromium browser
5
+ Author: Rim Assouel, Léo Boisvert, Massimo Caccia, Alex Drouin, Maxime Gasse, Imene Kerboua, Alex Lacoste, Thibault Le Sellier De Chezelles, Tom Marty, Aman Jaiswal
6
+ License: Apache-2.0
7
+ Classifier: Development Status :: 3 - Alpha
8
+ Classifier: Programming Language :: Python :: 3
9
+ Classifier: Operating System :: OS Independent
10
+ Classifier: Intended Audience :: Science/Research
11
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
12
+ Classifier: License :: OSI Approved :: Apache Software License
13
+ Requires-Python: >3.10
14
+ Description-Content-Type: text/markdown
15
+ Requires-Dist: browsergym-core==0.13.4
16
+ Requires-Dist: browsergym-miniwob==0.13.4
17
+ Requires-Dist: browsergym-webarena==0.13.4
18
+ Requires-Dist: browsergym-visualwebarena==0.13.4
19
+ Requires-Dist: browsergym-assistantbench==0.13.4
20
+ Requires-Dist: browsergym-experiments==0.13.4
21
+ Requires-Dist: browsergym-workarena>=0.4.1
22
+ Requires-Dist: weblinx-browsergym>=0.0.2
BrowserGym/browsergym/browsergym.egg-info/SOURCES.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ pyproject.toml
2
+ browsergym.egg-info/PKG-INFO
3
+ browsergym.egg-info/SOURCES.txt
4
+ browsergym.egg-info/dependency_links.txt
5
+ browsergym.egg-info/requires.txt
6
+ browsergym.egg-info/top_level.txt
BrowserGym/browsergym/browsergym.egg-info/dependency_links.txt ADDED
@@ -0,0 +1 @@
 
 
1
+
BrowserGym/browsergym/browsergym.egg-info/requires.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ browsergym-core==0.13.4
2
+ browsergym-miniwob==0.13.4
3
+ browsergym-webarena==0.13.4
4
+ browsergym-visualwebarena==0.13.4
5
+ browsergym-assistantbench==0.13.4
6
+ browsergym-experiments==0.13.4
7
+ browsergym-workarena>=0.4.1
8
+ weblinx-browsergym>=0.0.2
BrowserGym/browsergym/browsergym.egg-info/top_level.txt ADDED
@@ -0,0 +1 @@
 
 
1
+
BrowserGym/browsergym/core/src/browsergym/core/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (1.14 kB). View file
 
BrowserGym/browsergym/core/src/browsergym/core/__pycache__/chat.cpython-311.pyc ADDED
Binary file (6.89 kB). View file
 
BrowserGym/browsergym/core/src/browsergym/core/__pycache__/constants.cpython-311.pyc ADDED
Binary file (428 Bytes). View file
 
BrowserGym/browsergym/core/src/browsergym/core/__pycache__/env.cpython-311.pyc ADDED
Binary file (31.2 kB). View file
 
BrowserGym/browsergym/core/src/browsergym/core/__pycache__/observation.cpython-311.pyc ADDED
Binary file (22.7 kB). View file
 
BrowserGym/browsergym/core/src/browsergym/core/__pycache__/registration.cpython-311.pyc ADDED
Binary file (3.49 kB). View file
 
BrowserGym/browsergym/core/src/browsergym/core/__pycache__/spaces.cpython-311.pyc ADDED
Binary file (8.42 kB). View file
 
BrowserGym/browsergym/core/src/browsergym/core/__pycache__/task.cpython-311.pyc ADDED
Binary file (5.53 kB). View file
 
BrowserGym/browsergym/core/src/browsergym/core/action/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (561 Bytes). View file
 
BrowserGym/browsergym/core/src/browsergym/core/action/__pycache__/base.cpython-311.pyc ADDED
Binary file (3.12 kB). View file
 
BrowserGym/browsergym/core/src/browsergym/core/action/__pycache__/functions.cpython-311.pyc ADDED
Binary file (26.2 kB). View file
 
BrowserGym/browsergym/core/src/browsergym/core/action/__pycache__/highlevel.cpython-311.pyc ADDED
Binary file (12.4 kB). View file
 
BrowserGym/browsergym/core/src/browsergym/core/action/__pycache__/parsers.cpython-311.pyc ADDED
Binary file (6.82 kB). View file
 
BrowserGym/browsergym/core/src/browsergym/core/action/__pycache__/utils.cpython-311.pyc ADDED
Binary file (12.2 kB). View file
 
BrowserGym/browsergym/core/src/browsergym/core/env.py CHANGED
@@ -27,6 +27,7 @@ from .observation import (
27
  )
28
  from .spaces import AnyBox, AnyDict, Float, Unicode
29
  from .task import AbstractBrowserTask
 
30
 
31
  logger = logging.getLogger(__name__)
32
 
@@ -602,6 +603,8 @@ document.addEventListener("visibilitychange", () => {
602
  _post_extract(self.page)
603
 
604
  # obs is generic to all tasks
 
 
605
  obs = {
606
  "chat_messages": tuple(copy.deepcopy(self.chat.messages)),
607
  "goal": _try_to_extract_legacy_goal(self.goal_object), # legacy goal, deprecated
@@ -612,7 +615,7 @@ document.addEventListener("visibilitychange", () => {
612
  "open_pages_titles": tuple(page.title() for page in self.context.pages),
613
  "active_page_index": np.asarray([self.context.pages.index(self.page)]),
614
  "url": self.page.url, # redundant with "open_pages_urls" and "active_page_index"
615
- "screenshot": extract_screenshot(self.page),
616
  "dom_object": dom,
617
  "axtree_object": axtree,
618
  "extra_element_properties": extra_properties,
 
27
  )
28
  from .spaces import AnyBox, AnyDict, Float, Unicode
29
  from .task import AbstractBrowserTask
30
+ from ..utils.obs import overlay_som, flatten_axtree_to_str
31
 
32
  logger = logging.getLogger(__name__)
33
 
 
603
  _post_extract(self.page)
604
 
605
  # obs is generic to all tasks
606
+ screenshot_np_array = extract_screenshot(self.page)
607
+ som_screenshot_np_array = overlay_som(screenshot_np_array, extra_properties)
608
  obs = {
609
  "chat_messages": tuple(copy.deepcopy(self.chat.messages)),
610
  "goal": _try_to_extract_legacy_goal(self.goal_object), # legacy goal, deprecated
 
615
  "open_pages_titles": tuple(page.title() for page in self.context.pages),
616
  "active_page_index": np.asarray([self.context.pages.index(self.page)]),
617
  "url": self.page.url, # redundant with "open_pages_urls" and "active_page_index"
618
+ "som_screenshot": som_screenshot_np_array,
619
  "dom_object": dom,
620
  "axtree_object": axtree,
621
  "extra_element_properties": extra_properties,
BrowserGym/browsergym/core/src/browsergym/core/task.py CHANGED
@@ -92,7 +92,7 @@ class OpenEndedTask(AbstractBrowserTask):
92
  self.goal = goal
93
 
94
  def setup(self, page: playwright.sync_api.Page) -> tuple[str, dict]:
95
- page.goto(self.start_url, timeout=10000)
96
  return self.goal, {}
97
 
98
  def teardown(self) -> None:
 
92
  self.goal = goal
93
 
94
  def setup(self, page: playwright.sync_api.Page) -> tuple[str, dict]:
95
+ page.goto(self.start_url, timeout=50000)
96
  return self.goal, {}
97
 
98
  def teardown(self) -> None:
BrowserGym/browsergym/core/src/browsergym/utils/__pycache__/obs.cpython-311.pyc ADDED
Binary file (19.3 kB). View file
 
BrowserGym/browsergym/experiments/src/browsergym/experiments/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (446 Bytes). View file
 
BrowserGym/browsergym/experiments/src/browsergym/experiments/__pycache__/agent.cpython-311.pyc ADDED
Binary file (6.58 kB). View file
 
BrowserGym/browsergym/experiments/src/browsergym/experiments/__pycache__/loop.cpython-311.pyc ADDED
Binary file (55.2 kB). View file
 
BrowserGym/browsergym/experiments/src/browsergym/experiments/__pycache__/utils.cpython-311.pyc ADDED
Binary file (2.18 kB). View file
 
BrowserGym/browsergym/visualwebarena/src/browsergym/visualwebarena/task.py CHANGED
@@ -109,7 +109,7 @@ class GenericVisualWebArenaTask(AbstractBrowserTask):
109
  # task properties, will be used to set up the browsergym environment
110
  self.viewport = {"width": 1280, "height": 720}
111
  self.slow_mo = 1000 # ms
112
- self.timeout = 10000 # ms
113
 
114
  self.webarena_instance = VisualWebArenaInstance()
115
  self.config_file: str = None
 
109
  # task properties, will be used to set up the browsergym environment
110
  self.viewport = {"width": 1280, "height": 720}
111
  self.slow_mo = 1000 # ms
112
+ self.timeout = 50000 # ms
113
 
114
  self.webarena_instance = VisualWebArenaInstance()
115
  self.config_file: str = None
BrowserGym/browsergym/webarena/src/browsergym/webarena/task.py CHANGED
@@ -34,7 +34,7 @@ class GenericWebArenaTask(AbstractBrowserTask):
34
  # task properties, will be used to set up the browsergym environment
35
  self.viewport = {"width": 1280, "height": 720}
36
  self.slow_mo = 1000 # ms
37
- self.timeout = 10000 # ms
38
 
39
  self.webarena_instance = WebArenaInstance()
40
  self.config_file: str = None
 
34
  # task properties, will be used to set up the browsergym environment
35
  self.viewport = {"width": 1280, "height": 720}
36
  self.slow_mo = 1000 # ms
37
+ self.timeout = 50000 # ms
38
 
39
  self.webarena_instance = WebArenaInstance()
40
  self.config_file: str = None
Dockerfile CHANGED
@@ -56,6 +56,11 @@ RUN curl -fsSL https://dl.google.com/linux/linux_signing_key.pub | gpg --dearmor
56
  # Set up working directory
57
  WORKDIR /app
58
 
 
 
 
 
 
59
  # Copy requirements and install Python dependencies
60
  COPY requirements.txt .
61
  RUN pip install --no-cache-dir -r requirements.txt
@@ -94,6 +99,8 @@ ENV RESOLUTION_HEIGHT=1080
94
  # COPY supervisord.conf /etc/supervisor/conf.d/supervisord.conf
95
 
96
  # EXPOSE 7788 6080 5900
 
 
97
 
98
  # CMD ["/usr/bin/supervisord", "-c", "/etc/supervisor/conf.d/supervisord.conf"]
99
- # RUN python3 app.py
 
56
  # Set up working directory
57
  WORKDIR /app
58
 
59
+ COPY templates/ templates/
60
+ COPY browser_agent.py .
61
+ COPY process_run.py .
62
+ COPY utils.py .
63
+
64
  # Copy requirements and install Python dependencies
65
  COPY requirements.txt .
66
  RUN pip install --no-cache-dir -r requirements.txt
 
99
  # COPY supervisord.conf /etc/supervisor/conf.d/supervisord.conf
100
 
101
  # EXPOSE 7788 6080 5900
102
+ EXPOSE 7860
103
+ ENV GRADIO_SERVER_NAME="0.0.0.0"
104
 
105
  # CMD ["/usr/bin/supervisord", "-c", "/etc/supervisor/conf.d/supervisord.conf"]
106
+ CMD ["python", "app.py"]
agent/__init__.py ADDED
File without changes
agent/checklist.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .mini_bench.agent import ChecklistGenerationAgent
2
+
3
+ def generate_checklist(**data):
4
+ # data: 'intent', 'start_url', 'text_observation'
5
+ agent_config = {
6
+ 'model_name': 'WPRM/qwen-3b-ar-reward-cot-mtl-checklist-enhanced',
7
+ 'base_url': 'http://165.132.144.84:7701/v1',
8
+ 'api_key': 'empty',
9
+ 'temperature': 0.7,
10
+ 'use_log_probs': True,
11
+ 'use_checklist': True,
12
+ 'use_multimodal': False,
13
+ 'num_generate': 1,
14
+ }
15
+ checklist_generation_agent = ChecklistGenerationAgent(agent_config)
16
+ response_list, cost = checklist_generation_agent.generate_response(data, prompt_type='ours', constraint_str_list=["<think>", "</think>", "<answer>", "</answer>"])
17
+ response = response_list[0]
18
+ return response.split("<answer>")[-1].split("</answer>")[0].strip()
agent/mini_bench/__init__.py ADDED
File without changes
agent/mini_bench/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (186 Bytes). View file
 
agent/mini_bench/__pycache__/agent.cpython-311.pyc ADDED
Binary file (20.7 kB). View file
 
agent/mini_bench/__pycache__/reward_agent.cpython-311.pyc ADDED
Binary file (21.3 kB). View file
 
agent/mini_bench/agent.py ADDED
@@ -0,0 +1,467 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import ABC, abstractmethod
2
+ import time
3
+ import requests
4
+ import json
5
+ import math
6
+ from langsmith import Client
7
+ from langchain_openai import ChatOpenAI
8
+
9
+ from .prompts import get_messages
10
+ from .prompts.judge_prompt import (
11
+ JUDGE_OURS_BT_MODELING_PROMPT_TEMPLATE,
12
+ JUDGE_OURS_BT_MODELING_WO_CHECKLIST_PROMPT_TEMPLATE,
13
+ JUDGE_OURS_BT_MODELING_MULTIMODAL_PROMPT_TEMPLATE,
14
+ JUDGE_OURS_BT_MODELING_MULTIMODAL_WO_CHECKLIST_PROMPT_TEMPLATE
15
+ )
16
+ from .prompts.image_utils import image_to_base64_url
17
+
18
+ MAX_RETRY = 3
19
+ RETRY_SLEEP = 5
20
+ MODEL_COST_MAPPING = {
21
+ "gpt-4o-mini": {
22
+ "input_token_cost": 0.15,
23
+ "output_token_cost": 0.6
24
+ },
25
+ "gpt-4o": {
26
+ "input_token_cost": 2.5,
27
+ "output_token_cost": 10
28
+ },
29
+ }
30
+
31
+
32
+ class Agent(ABC):
33
+ @abstractmethod
34
+ def generate_response(self, inputs: dict) -> str:
35
+ pass
36
+
37
+ class BaseAgent(Agent):
38
+ def __init__(self, agent_config: dict):
39
+ self.agent_config = agent_config
40
+ self._setup()
41
+
42
+ def _setup(self):
43
+ use_log_probs = self.agent_config.get("use_log_probs", False)
44
+ if use_log_probs:
45
+ self.llm = ChatOpenAI(
46
+ model=self.agent_config["model_name"],
47
+ base_url=self.agent_config["base_url"],
48
+ api_key=self.agent_config["api_key"],
49
+ temperature=self.agent_config["temperature"],
50
+ timeout=300,
51
+ logprobs=True,
52
+ top_logprobs=10
53
+ )
54
+ else:
55
+ self.llm = ChatOpenAI(
56
+ model=self.agent_config["model_name"],
57
+ base_url=self.agent_config["base_url"],
58
+ api_key=self.agent_config["api_key"],
59
+ temperature=self.agent_config["temperature"],
60
+ timeout=300
61
+ )
62
+ self.temperature = self.agent_config["temperature"]
63
+ self.num_generate = self.agent_config["num_generate"]
64
+ self.use_checklist = self.agent_config.get("use_checklist", False)
65
+ self.use_multimodal = self.agent_config.get("use_multimodal", False)
66
+
67
+ # setup cost
68
+ model_cost = MODEL_COST_MAPPING.get(self.agent_config["model_name"], None)
69
+ if model_cost and "api" in self.agent_config["base_url"]:
70
+ self.input_token_cost = model_cost["input_token_cost"]
71
+ self.output_token_cost = model_cost["output_token_cost"]
72
+ else:
73
+ self.input_token_cost = 0.0
74
+ self.output_token_cost = 0.0
75
+
76
+ def generate_with_retry(self, model_input, constraint_str_list: list = None):
77
+ total_input_tokens = 0
78
+ total_output_tokens = 0
79
+ if self.temperature == 0:
80
+ response = self.llm.invoke(model_input)
81
+ total_input_tokens += response.response_metadata["token_usage"]["prompt_tokens"]
82
+ total_output_tokens += response.response_metadata["token_usage"]["completion_tokens"]
83
+ else:
84
+ for i in range(MAX_RETRY):
85
+ try:
86
+ response = self.llm.invoke(model_input)
87
+ total_input_tokens += response.response_metadata["token_usage"]["prompt_tokens"]
88
+ total_output_tokens += response.response_metadata["token_usage"]["completion_tokens"]
89
+ if constraint_str_list:
90
+ pass_constraint_num = 0
91
+ for constraint_str in constraint_str_list:
92
+ if constraint_str in response.content:
93
+ pass_constraint_num += 1
94
+ if pass_constraint_num == len(constraint_str_list):
95
+ break
96
+ else:
97
+ print(f"Agent has fomat issue, retry... {i+1}/{MAX_RETRY}")
98
+ print(response.content)
99
+ else:
100
+ break
101
+ except Exception as e:
102
+ print(f"Agent returned an Error: {e}")
103
+ response = None
104
+ time.sleep(RETRY_SLEEP)
105
+
106
+ cost = self.input_token_cost * total_input_tokens / 1000000 + self.output_token_cost * total_output_tokens / 1000000
107
+
108
+ if response is None:
109
+ return "", cost
110
+ else:
111
+ return response.content, cost
112
+
113
+ def prepare_message(self, model_input: dict, prompt_type: str):
114
+ message = []
115
+ return message
116
+
117
+ def generate_response(self, model_input: dict, prompt_type: str, constraint_str_list: list = None,):
118
+ total_cost = 0
119
+ response_list = []
120
+ # prepare message
121
+ message = self.prepare_message(model_input, prompt_type)
122
+ # print(message)
123
+
124
+ # n sampling
125
+ for i in range(self.num_generate):
126
+ response, cost = self.generate_with_retry(message, constraint_str_list)
127
+ response_list.append(response)
128
+ total_cost += cost
129
+
130
+ return response_list, total_cost
131
+
132
+
133
+ class GroundingJudgeAgent(BaseAgent):
134
+ def __init__(self, agent_config: dict):
135
+ super().__init__(agent_config)
136
+ self._setup()
137
+
138
+ def prepare_message(self, model_input: dict, prompt_type):
139
+ message = get_messages(
140
+ input_info=model_input,
141
+ inference_mode="judge_grounding",
142
+ prompt_type=prompt_type,
143
+ use_multimodal=self.use_multimodal,
144
+ text_obs=self.agent_config["text_obs_type"],
145
+ image_obs=self.agent_config["image_obs_type"]
146
+ )
147
+ return message
148
+
149
+
150
+ class ProgressJudgeAgent(BaseAgent):
151
+ def __init__(self, agent_config: dict):
152
+ super().__init__(agent_config)
153
+ self._setup()
154
+
155
+ def prepare_message(self, model_input: dict, prompt_type):
156
+ if self.agent_config["input_type"]=="text_only":
157
+ use_multimodal = False
158
+ text_obs = self.agent_config["text_obs_type"]
159
+ image_obs = None
160
+ elif self.agent_config["input_type"]=="image_only":
161
+ use_multimodal = True
162
+ text_obs = None
163
+ image_obs = self.agent_config["image_obs_type"]
164
+ elif self.agent_config["input_type"]=="text_image":
165
+ use_multimodal = True
166
+ text_obs = self.agent_config["text_obs_type"]
167
+ image_obs = self.agent_config["image_obs_type"]
168
+ else:
169
+ raise ValueError(f"Invalid input type: {self.agent_config['input_type']}")
170
+
171
+ if self.agent_config["use_in_progress"]:
172
+ use_in_progress = True
173
+ else:
174
+ use_in_progress = False
175
+
176
+ message = get_messages(
177
+ input_info=model_input,
178
+ inference_mode="judge_progress",
179
+ prompt_type=prompt_type,
180
+ use_checklist=self.use_checklist,
181
+ use_multimodal=use_multimodal,
182
+ text_obs=text_obs,
183
+ image_obs=image_obs,
184
+ use_in_progress=use_in_progress
185
+ )
186
+ return message
187
+
188
+ def add_logprob(self, ori_logprob: float, add_logprob: float):
189
+ if ori_logprob is None:
190
+ return add_logprob
191
+ else:
192
+ ori_prob = math.exp(ori_logprob)
193
+ add_prob = math.exp(add_logprob)
194
+ return math.log(ori_prob + add_prob)
195
+
196
+ def get_judge_probs(self, logprobs: list):
197
+ # target_judge = {
198
+ # "yes": [" Yes", "Yes"],
199
+ # "no": [" No", "No"],
200
+ # "in": [" In", "In"]
201
+ # }
202
+ target_judge = {
203
+ "yes": [
204
+ " Yes", "ĠYes", "Yes", "ĊYes",
205
+ "Ġyes", "yes", "Ċyes",
206
+ "ĠYES", "YES", "ĊYES",
207
+ "ĠDone", "Done", "ĊDone",
208
+ "ĠCompleted", "Completed", "ĊCompleted",
209
+ "ĠCorrect", "Correct", "ĊCorrect"
210
+ ],
211
+ "no": [
212
+ " No", "ĠNo", "No", "ĊNo",
213
+ "ĠNO", "NO", "ĊNO",
214
+ "ĠNot", "Not", "ĊNot",
215
+ "ĠNone", "None", "ĊNone",
216
+ "ĠNope", "Nope", "ĊNope",
217
+ "ĠUn", "Un", "ĊUn",
218
+ "ĠWrong", "Wrong", "ĊWrong"
219
+ ],
220
+ "in": [
221
+ " In", "ĠIn", "In", "ĊIn",
222
+ "ĠPending", "Pending", "ĊPending",
223
+ "ĠPart", "Part", "ĊPart",
224
+ "ĠPartial", "Partial", "ĊPartial",
225
+ "ĠInProgress", "InProgress", "ĊInProgress"
226
+ ]
227
+ }
228
+ response_str = ""
229
+ judge_probs_list = []
230
+ # print(logprobs)
231
+ for i, log_prob in enumerate(logprobs):
232
+ # Start to find judge string
233
+ if "<answer>" in response_str:
234
+ find_judge_str = None
235
+ for judge_type in target_judge:
236
+ if log_prob["token"] in target_judge[judge_type]:
237
+ # print(log_prob)
238
+ find_judge_str = judge_type
239
+ break
240
+ if find_judge_str:
241
+ # print("find judge str")
242
+ token_judge_dict = {
243
+ "yes": None,
244
+ "no": None,
245
+ "in": None
246
+ }
247
+ if "top_logprobs" in log_prob:
248
+ for token_info in log_prob["top_logprobs"]:
249
+ for judge_type in target_judge:
250
+ for judge_str in target_judge[judge_type]:
251
+ # if judge_str in token_info["token"] and token_info["logprob"] > token_judge_dict[judge_type]:
252
+ # token_judge_dict[judge_type] = token_info["logprob"]
253
+ if judge_str in token_info["token"]:
254
+ # print(token_info["logprob"])
255
+ token_judge_dict[judge_type] = self.add_logprob(token_judge_dict[judge_type], token_info["logprob"])
256
+ # for None case
257
+ for judge_type in token_judge_dict:
258
+ if token_judge_dict[judge_type] is None:
259
+ token_judge_dict[judge_type] = float("-inf")
260
+ judge_probs_list.append(token_judge_dict)
261
+ else:
262
+ # for vllm bugs : no top_logprobs
263
+ for judge_type in token_judge_dict:
264
+ if judge_type == find_judge_str:
265
+ token_judge_dict[judge_type] = log_prob["logprob"]
266
+ else:
267
+ token_judge_dict[judge_type] = float("-inf")
268
+ judge_probs_list.append(token_judge_dict)
269
+ # print(token_judge_dict)
270
+
271
+ if "</answer>" in response_str:
272
+ break
273
+
274
+ response_str += log_prob["token"]
275
+ # print(response_str.replace("Ġ", " ").replace("Ċ", "\n"))
276
+ # print(judge_probs_list)
277
+ if len(judge_probs_list) == 0:
278
+ return [{
279
+ "yes": 0.0,
280
+ "no": 0.0,
281
+ "in": 0.0
282
+ }]
283
+ else:
284
+ # convert with softmax
285
+ final_judge_probs_list = []
286
+ for judge_probs in judge_probs_list:
287
+ exp_logprobs = [math.exp(x) for x in [judge_probs["yes"], judge_probs["no"], judge_probs["in"]]]
288
+ sum_exp_logprobs = sum(exp_logprobs)
289
+ softmax_probs = [x / sum_exp_logprobs for x in exp_logprobs]
290
+ final_judge_probs_list.append({
291
+ "yes": softmax_probs[0],
292
+ "no": softmax_probs[1],
293
+ "in": softmax_probs[2]
294
+ })
295
+ return final_judge_probs_list
296
+
297
+ def generate_probs(self, model_input: dict, prompt_type: str):
298
+ total_cost = 0
299
+ response_list = []
300
+ # prepare message
301
+ message = self.prepare_message(model_input, prompt_type)
302
+ # print(message)
303
+
304
+ for i in range(self.num_generate):
305
+ try:
306
+ response = self.llm.invoke(message)
307
+ total_input_tokens = response.response_metadata["token_usage"]["prompt_tokens"]
308
+ total_output_tokens = response.response_metadata["token_usage"]["completion_tokens"]
309
+ total_cost = self.input_token_cost * total_input_tokens / 1000000 + self.output_token_cost * total_output_tokens / 1000000
310
+ logprobs = response.response_metadata["logprobs"]["content"]
311
+ response_list.append(
312
+ {
313
+ "response": response.content,
314
+ "judge_probs": self.get_judge_probs(logprobs)
315
+ }
316
+ )
317
+ except Exception as e:
318
+ print(f"Error: {e}")
319
+ # print(response.response_metadata["logprobs"])
320
+ response_list.append(
321
+ {
322
+ "response": response.content,
323
+ "judge_probs": []
324
+ }
325
+ )
326
+ return response_list, total_cost
327
+
328
+
329
+ class ChecklistGenerationAgent(BaseAgent):
330
+ def __init__(self, agent_config: dict):
331
+ super().__init__(agent_config)
332
+ self._setup()
333
+
334
+ def prepare_message(self, model_input: dict, prompt_type):
335
+ message = get_messages(
336
+ input_info=model_input,
337
+ inference_mode="checklist_generation",
338
+ prompt_type=prompt_type
339
+ )
340
+ return message
341
+
342
+
343
+ class ClassifierRewardAgent(Agent):
344
+ def __init__(self, url: str, use_checklist: bool = False, use_multimodal: bool = False):
345
+ self.url = url
346
+ self.use_checklist = use_checklist
347
+ self.use_multimodal = use_multimodal
348
+
349
+ def _process_multimodal_message(self, prompt: str, image_list: list[str]):
350
+ multimodal_message = []
351
+ text_prompt_prefix = prompt.split("<IMAGE_PLACEHOLDER>")[0]
352
+ text_prompt_suffix = prompt.split("<IMAGE_PLACEHOLDER>")[1]
353
+ multimodal_message = [
354
+ {"type": "text", "text": text_prompt_prefix},
355
+ # {"type": "image_url", "image_url": {"url": image_to_base64_url(image_list[0])}},
356
+ {"type": "image", "image": image_to_base64_url(image_list[0])},
357
+ {"type": "text", "text": text_prompt_suffix}
358
+ ]
359
+ return multimodal_message
360
+
361
+ def _make_query(self, user_prompt_template: dict, model_input: dict | list[dict]):
362
+ if self.use_multimodal:
363
+ tmp_user_prompt = user_prompt_template["user"].format(
364
+ **model_input
365
+ )
366
+ user_prompt = self._process_multimodal_message(tmp_user_prompt, model_input["image_list"])
367
+ else:
368
+ user_prompt = user_prompt_template["user"].format(
369
+ **model_input
370
+ )
371
+ assistant_prompt = user_prompt_template["assistant"].format(
372
+ **model_input
373
+ )
374
+ query = [
375
+ {"role": "user", "content": user_prompt},
376
+ {"role": "assistant", "content": assistant_prompt}
377
+ ]
378
+ return query
379
+
380
+ def prepare_message(self, model_input: dict | list[dict], batch: bool = False):
381
+ if self.use_checklist:
382
+ if self.use_multimodal:
383
+ user_prompt_template = JUDGE_OURS_BT_MODELING_MULTIMODAL_PROMPT_TEMPLATE
384
+ else:
385
+ user_prompt_template = JUDGE_OURS_BT_MODELING_PROMPT_TEMPLATE
386
+ else:
387
+ if self.use_multimodal:
388
+ user_prompt_template = JUDGE_OURS_BT_MODELING_MULTIMODAL_WO_CHECKLIST_PROMPT_TEMPLATE
389
+ else:
390
+ user_prompt_template = JUDGE_OURS_BT_MODELING_WO_CHECKLIST_PROMPT_TEMPLATE
391
+
392
+ if self.use_multimodal:
393
+ if batch:
394
+ message = [self._make_query(user_prompt_template, input) for input in model_input]
395
+ else:
396
+ message = [self._make_query(user_prompt_template, model_input)]
397
+ else:
398
+ if batch:
399
+ message = {
400
+ "query": [self._make_query(user_prompt_template, input) for input in model_input],
401
+ "promptts": []
402
+ }
403
+ else:
404
+ message = {
405
+ "query": self._make_query(user_prompt_template, model_input),
406
+ "prompts": []
407
+ }
408
+
409
+ return message
410
+
411
+ def get_rm_scroe(self, message: dict | list):
412
+ headers = {"Content-Type": "application/json"}
413
+
414
+ try:
415
+ if self.use_multimodal:
416
+ response = requests.post(
417
+ self.url,
418
+ json={"messages": message},
419
+ timeout=600
420
+ )
421
+ else:
422
+ response = requests.post(
423
+ self.url,
424
+ headers=headers,
425
+ data=json.dumps(message),
426
+ timeout=300
427
+ )
428
+ response.raise_for_status()
429
+
430
+ response_json = response.json()
431
+
432
+ if "rewards" not in response_json:
433
+ print(f"Error: 'rewards' key not found in API response: {response_json}")
434
+ return []
435
+
436
+ if "get_reward" in self.url:
437
+ # use openrlhf
438
+ return response_json["rewards"]
439
+ elif "pooling" in self.url:
440
+ # use vllm server
441
+ return response_json["reward"]
442
+ else:
443
+ # error
444
+ raise ValueError(f"Invalid URL: {self.url}")
445
+
446
+ except requests.exceptions.Timeout:
447
+ print(f"Error: Request timed out to {self.url}")
448
+ return []
449
+ except requests.exceptions.RequestException as e:
450
+ print(f"Error during request to {self.url}: {e}")
451
+ return []
452
+ except json.JSONDecodeError:
453
+ print(f"Error: Failed to decode JSON response from {self.url}")
454
+ return []
455
+ except KeyError as e:
456
+ print(f"Error: Missing key {e} in response from {self.url}")
457
+ return []
458
+
459
+
460
+ def generate_response(self, model_input: dict | list[dict], batch: bool = False):
461
+ if batch:
462
+ message = self.prepare_message(model_input, batch=True)
463
+ else:
464
+ message = self.prepare_message(model_input)
465
+ rewards = self.get_rm_scroe(message)
466
+
467
+ return rewards, 0
agent/mini_bench/checklist_eval.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+
3
+ from langchain_openai import ChatOpenAI
4
+
5
+ from .agent import BaseAgent
6
+
7
+ SYSTEM_PROMPT = "You are an expert evaluator. Your task is to assess how well a Web Agent’s generated checklist aligns with the reference checklist for a given user instruction."
8
+
9
+ USER_PROMPT = """# Task Description
10
+ Use the provided task description, evaluation criteria, and both checklists to assign a score from 1 to 5. Justify your rating with a brief explanation that considers both content overlap and logical structure.
11
+
12
+ ## Score Criteria
13
+ - 5: Checklist covers all subgoals, is correct and clearly expressed
14
+ - 4: Minor omissions or phrasing issues but mostly accurate and complete
15
+ - 3: Partially matches, but with noticeable gaps or errors
16
+ - 2: Incomplete or includes incorrect steps
17
+ - 1: Mostly irrelevant, incorrect, or missing the task goal
18
+
19
+ ## User Instruction:
20
+ {intent}
21
+
22
+ ## Reference Checklist:
23
+ {gt_checklist}
24
+
25
+ ## Agent’s Generated Checklist:
26
+ {generated_checklist}
27
+
28
+ # Output Format
29
+ Your response should be in the following format:
30
+ REASON: [Write 2–4 sentences explaining how well the generated checklist matches the reference. Mention specific matches, omissions, errors, or strengths.]
31
+ SCORE: [1–5]
32
+ """
33
+
34
+
35
+ class ChecklistEvalAgent(BaseAgent):
36
+ def __init__(self, agent_config: dict):
37
+ super().__init__(agent_config)
38
+ self._setup()
39
+
40
+ def prepare_message(self, model_input: dict, prompt_type):
41
+ message = [
42
+ {
43
+ "role": "system",
44
+ "content": SYSTEM_PROMPT
45
+ },
46
+ {
47
+ "role": "user",
48
+ "content": USER_PROMPT.format(
49
+ intent=model_input["intent"],
50
+ gt_checklist=model_input["gt_checklist"],
51
+ generated_checklist=model_input["generated_checklist"]
52
+ )
53
+ }
54
+ ]
55
+ return message
56
+
57
+ def generate_response(self, model_input: dict):
58
+ total_cost = 0
59
+ response_list = []
60
+ # prepare message
61
+ message = self.prepare_message(model_input)
62
+
63
+ # n sampling
64
+ for _ in range(self.num_generate):
65
+ response, cost = self.generate_with_retry(message, ["SCORE"])
66
+ response_list.append(response)
67
+ total_cost += cost
68
+
69
+ return response_list, total_cost
70
+
71
+ def parsing_score(response: str):
72
+ score = response.split("SCORE:")[-1].split("\n")[0].strip()
73
+ match = re.search(r'\d+', score)
74
+
75
+ if match:
76
+ return int(match.group())
77
+ else:
78
+ return None
79
+
80
+ def average_score(scores: list[int]):
81
+ if len(scores) == 0:
82
+ return 0
83
+ return sum(scores) / len(scores)
84
+
85
+ def get_score(results: list[dict]):
86
+ score_list = []
87
+ for result in results:
88
+ tmp_scores = [parsing_score(response) for response in result["response"]]
89
+ scores = [score for score in tmp_scores if score is not None]
90
+ result["score_list"] = scores
91
+ final_score = average_score(scores)
92
+ result["score"] = final_score
93
+ score_list.append(result)
94
+
95
+ return results, score_list
agent/mini_bench/eval_utils.py ADDED
@@ -0,0 +1,309 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import random
3
+ from collections import Counter
4
+
5
+ from .utils import load_json, save_json, create_html_report
6
+
7
+ random.seed(42)
8
+ def get_score(response_list: list, indicator: str) -> int:
9
+ if len(response_list) == 0:
10
+ return [-100]
11
+
12
+ if isinstance(response_list[0], float):
13
+ return response_list
14
+
15
+ if indicator == "prob":
16
+ score_list = []
17
+ for response in response_list:
18
+ total_score = 0
19
+ for judge_probs in response:
20
+ yes_prob = judge_probs.get("yes", 0)
21
+ in_progress_prob = judge_probs.get("in", 0)
22
+ total_score += yes_prob + in_progress_prob * 0.5
23
+ if len(response) > 0:
24
+ score_list.append(total_score / len(response))
25
+ else:
26
+ score_list.append(0)
27
+ return score_list
28
+ else:
29
+ score_list = []
30
+ for response in response_list:
31
+ if indicator == "SCORE":
32
+ if "SCORE" in response:
33
+ try:
34
+ score_str = response.split("SCORE:")[1].split("\n")[0].strip()
35
+ except:
36
+ score_str = response.split("SCORE:")[-1].strip()
37
+ # find first integer
38
+ try:
39
+ score = re.search(r'-?\d+', score_str).group()
40
+ score_list.append(int(score))
41
+ except:
42
+ score_list.append(0)
43
+ else:
44
+ try:
45
+ score_str = response.split("<answer>")[1].split("</answer>")[0].strip()
46
+ except:
47
+ score_str = response.split("<answer>")[-1].split("</answer>")[0].strip()
48
+ # find "Yes" or "No"
49
+ if "Yes" in score_str:
50
+ score_list.append(1)
51
+ elif "In Progress" in score_str:
52
+ score_list.append(0.5)
53
+ elif "No" in score_str:
54
+ score_list.append(0)
55
+ else:
56
+ score_list.append(0)
57
+ elif indicator == "JUDGE":
58
+ try:
59
+ judge_str = response.split("JUDGE:")[1].split("\n")[0].strip()
60
+ except:
61
+ judge_str = response.split("JUDGE:")[-1].strip()
62
+ if "Yes" in judge_str:
63
+ score_list.append(1)
64
+ elif "No" in judge_str:
65
+ score_list.append(0)
66
+ else:
67
+ score_list.append(0)
68
+ elif indicator == "CHECKLIST EVALUATION":
69
+ if "<answer>" in response:
70
+ try:
71
+ checklist_str = response.split("<answer>")[1].split("</answer>")[0].strip()
72
+ except:
73
+ checklist_str = response.split("<answer>")[-1].split("</answer>")[0].strip()
74
+ else:
75
+ checklist_str = response.split("CHECKLIST EVALUATION:")[-1].strip()
76
+
77
+ count_yes = checklist_str.count("Yes")
78
+ count_no = checklist_str.count("No")
79
+ count_in_progress = checklist_str.count("In Progress")
80
+ try:
81
+ total_score = (count_yes + count_in_progress*0.5) / (count_yes + count_no + count_in_progress)
82
+ except:
83
+ total_score = 0
84
+ score_list.append(total_score)
85
+ else:
86
+ raise ValueError(f"Invalid indicator: {indicator}")
87
+ return score_list
88
+
89
+ def get_acc_and_mrr(chosen_score, rejected_scores):
90
+ if len(rejected_scores) == 0:
91
+ return 0, False
92
+
93
+ same_score_num = rejected_scores.count(chosen_score)
94
+ all_scores = rejected_scores + [chosen_score]
95
+ sorted_scores = sorted(all_scores, reverse=True)
96
+ rank = sorted_scores.index(chosen_score) + 1 + same_score_num # draw penalty
97
+ if all(chosen_score > r for r in rejected_scores):
98
+ accuracy = True
99
+ else:
100
+ accuracy = False
101
+ return 1 / rank, accuracy
102
+
103
+ def average_score(score_list: list[float]):
104
+ if len(score_list) == 0:
105
+ return -100
106
+ return sum(score_list) / len(score_list)
107
+
108
+ def self_consistency_score(score_list: list[float]):
109
+ if len(score_list) == 0:
110
+ return -100
111
+ counter = Counter(score_list)
112
+ return max(counter.values()) / len(score_list)
113
+
114
+ def get_chosen_rejected_scores(data: dict, agg_func: str):
115
+ if len(data["chosen"]) == 0:
116
+ data["chosen"] = [{"score": [-100]}]
117
+ if len(data["rejected"]) == 0:
118
+ data["rejected"] = [{"score": [-100]}]
119
+ if not isinstance(data["chosen"][0], dict):
120
+ data["chosen"][0]["score"] = [-100]
121
+ if not isinstance(data["rejected"][0], dict):
122
+ data["rejected"][0]["score"] = [-100]
123
+
124
+ if agg_func == "average":
125
+ chosen_score = average_score(data["chosen"][0]["score"])
126
+ rejected_scores = [average_score(rejected_score["score"]) for rejected_score in data["rejected"]]
127
+ elif agg_func == "self_consistency":
128
+ chosen_score = self_consistency_score(data["chosen"][0]["score"])
129
+ rejected_scores = [self_consistency_score(rejected_score["score"]) for rejected_score in data["rejected"]]
130
+ else:
131
+ raise ValueError(f"Invalid agg_func: {agg_func}")
132
+ return chosen_score, rejected_scores
133
+
134
+ def get_score_results(results, agg_func):
135
+ score_dict = {"mrr": [], "accuracy": [], "traj_accuracy": []}
136
+ task_accuracy = {}
137
+ for result in results:
138
+ chosen_score, rejected_scores = get_chosen_rejected_scores(result, agg_func)
139
+ mrr, accuracy = get_acc_and_mrr(chosen_score, rejected_scores)
140
+ score_dict["mrr"].append(mrr)
141
+ score_dict["accuracy"].append(accuracy)
142
+ if result["task_id"] not in task_accuracy:
143
+ task_accuracy[result["task_id"]] = []
144
+ task_accuracy[result["task_id"]].append(accuracy)
145
+
146
+ for task_id in task_accuracy:
147
+ if sum(task_accuracy[task_id]) == len(task_accuracy[task_id]):
148
+ score_dict["traj_accuracy"].append(True)
149
+ else:
150
+ score_dict["traj_accuracy"].append(False)
151
+
152
+ return score_dict
153
+
154
+ def calculate_stats(results, agg_func: str="average"):
155
+ if len(results) == 0:
156
+ return {
157
+ "MRR": 0,
158
+ "Accuracy": 0,
159
+ "Traj_Accuracy": 0,
160
+ }
161
+ total_score = get_score_results(results, agg_func)
162
+ stats = {
163
+ "MRR": sum(total_score["mrr"]) / len(total_score["mrr"]),
164
+ "Accuracy": sum(total_score["accuracy"]) / len(total_score["accuracy"]),
165
+ "Traj_Accuracy": sum(total_score["traj_accuracy"]) / len(total_score["traj_accuracy"]),
166
+ }
167
+
168
+ return stats
169
+
170
+ def group_by_task(results, split_indicator: str):
171
+ # sort results by task_id and step_id
172
+ results.sort(key=lambda x: (x["task_id"], x["step_id"]))
173
+ # group by task_name
174
+ grouped_task_dict = {}
175
+ for result in results:
176
+ task_name = "task_" + str(result["task_id"]) + "_step_" + str(result["step_id"])
177
+ if task_name not in grouped_task_dict:
178
+ grouped_task_dict[task_name] = {
179
+ "task_id": result["task_id"],
180
+ "step_id": result["step_id"],
181
+ "intent": result["intent"],
182
+ "start_url": result["start_url"],
183
+ "gt_checklist": result["gt_checklist"],
184
+ "generated_checklist": result.get("generated_checklist", None) ,
185
+ "trajectory": result["trajectory"],
186
+ "current_url": result["current_url"],
187
+ "text_observation": result["text_observation"],
188
+ # "image_list": result["image_list"],
189
+ "chosen": [],
190
+ "rejected": [],
191
+ "source_name": result["source_name"],
192
+ }
193
+
194
+ response = result["response"] if "response" in result else []
195
+ type_data = {
196
+ "thought": result["thought"],
197
+ "action": result["action"],
198
+ "response": response,
199
+ "score": get_score(response, split_indicator) if split_indicator != "prob" else get_score(result["judge_probs"], split_indicator),
200
+ }
201
+ if split_indicator == "prob":
202
+ type_data["judge_probs"] = result["judge_probs"]
203
+ if result["type"] == "chosen":
204
+ grouped_task_dict[task_name]["chosen"].append(type_data)
205
+ elif result["type"] == "rejected":
206
+ grouped_task_dict[task_name]["rejected"].append(type_data)
207
+
208
+ return list(grouped_task_dict.values())
209
+
210
+
211
+ def processing_results(results, evaluation_mode: str, num_generate: int, use_batch: bool=False):
212
+ if "judge_probs" in results[0]:
213
+ split_indicator = "prob"
214
+ else:
215
+ if evaluation_mode == "judge_with_checklist_generation" or evaluation_mode == "judge_with_gt_checklist":
216
+ split_indicator = "CHECKLIST EVALUATION"
217
+ else:
218
+ split_indicator = "SCORE"
219
+
220
+ # if use_batch is True, make it flattened
221
+ if use_batch:
222
+ tmp_results = []
223
+ for result in results:
224
+ for d in result:
225
+ tmp_results.append(d)
226
+ grouped_results = group_by_task(tmp_results, split_indicator)
227
+ else:
228
+ grouped_results = group_by_task(results, split_indicator)
229
+
230
+ mind2web_results = []
231
+ webarena_results = []
232
+ mind2web_task_results = []
233
+ mind2web_website_results = []
234
+ mind2web_domain_results = []
235
+
236
+ for grouped_result in grouped_results:
237
+ if "mind2web" in grouped_result["source_name"]:
238
+ mind2web_results.append(grouped_result)
239
+ if grouped_result["source_name"] == "mind2web_test_task":
240
+ mind2web_task_results.append(grouped_result)
241
+ elif grouped_result["source_name"] == "mind2web_test_website":
242
+ mind2web_website_results.append(grouped_result)
243
+ elif grouped_result["source_name"] == "mind2web_test_domain":
244
+ mind2web_domain_results.append(grouped_result)
245
+ elif "webarena" in grouped_result["source_name"]:
246
+ webarena_results.append(grouped_result)
247
+
248
+ try:
249
+ final_stats = {
250
+ "mind2web": {
251
+ "MRR": {},
252
+ "Accuracy": {},
253
+ "Traj_Accuracy": {},
254
+ },
255
+ "webarena": {
256
+ "MRR": {},
257
+ "Accuracy": {},
258
+ "Traj_Accuracy": {},
259
+ },
260
+ "mind2web_task": {
261
+ "MRR": {},
262
+ "Accuracy": {},
263
+ "Traj_Accuracy": {},
264
+ },
265
+ "mind2web_website": {
266
+ "MRR": {},
267
+ "Accuracy": {},
268
+ "Traj_Accuracy": {},
269
+ },
270
+ "mind2web_domain": {
271
+ "MRR": {},
272
+ "Accuracy": {},
273
+ "Traj_Accuracy": {},
274
+ },
275
+ }
276
+ for source_results in [
277
+ ("mind2web", mind2web_results),
278
+ ("webarena", webarena_results),
279
+ ("mind2web_task", mind2web_task_results),
280
+ ("mind2web_website", mind2web_website_results),
281
+ ("mind2web_domain", mind2web_domain_results)
282
+ ]:
283
+ average_stats = calculate_stats(source_results[1], "average")
284
+ self_consistency_stats = calculate_stats(source_results[1], "self_consistency")
285
+ for metric in average_stats:
286
+ final_stats[source_results[0]][metric]["Average"] = average_stats[metric]
287
+ for metric in self_consistency_stats:
288
+ final_stats[source_results[0]][metric]["Self_Consistency"] = self_consistency_stats[metric]
289
+
290
+ if num_generate == 1:
291
+ for source_name in final_stats:
292
+ for metric in final_stats[source_name]:
293
+ print(f"{round(100 * final_stats[source_name][metric]['Average'], 2)}", end=", ")
294
+ print()
295
+ else:
296
+ for agg_func in ["Average", "Self_Consistency"]:
297
+ print(f"{agg_func}")
298
+ for source_name in final_stats:
299
+ for metric in final_stats[source_name]:
300
+ print(f"{round(100 * final_stats[source_name][metric][agg_func], 2)}", end=", ")
301
+ print()
302
+ except Exception as e:
303
+ print(e)
304
+ return grouped_results, None
305
+
306
+ # add function to convert json format results to html format results
307
+ # TODO: implement this function
308
+ # create_html_report(results, "results.html")
309
+ return grouped_results, final_stats
agent/mini_bench/inference_utils.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+
3
+ from multiprocessing import Process, Manager
4
+ from tqdm import tqdm
5
+
6
+
7
+ def worker_main(work_queue, result_queue, process_func, config):
8
+ while True:
9
+ item = work_queue.get()
10
+ if item is None:
11
+ result_queue.put(None)
12
+ break
13
+ try:
14
+ results, cost = process_func(config, item)
15
+ result_queue.put((results, cost))
16
+ except Exception as e:
17
+ item_info = item.get('idx', item.get('id', 'unknown item'))
18
+ print(f"Error processing item {item_info}: {e}")
19
+ result_queue.put(None)
20
+ finally:
21
+ work_queue.task_done()
22
+
23
+ def run_parallel_evaluation(dataset, process_func, config, num_workers, description):
24
+ """
25
+ Runs parallel evaluation on the given dataset and returns the results.
26
+
27
+ Args:
28
+ dataset (list or datasets.Dataset): Data to evaluate.
29
+ process_func (callable): Function to process each data item.
30
+ config (dict): Configuration for the process_func.
31
+ num_workers (int): Number of worker processes to use.
32
+ description (str): Description to display on the tqdm progress bar.
33
+
34
+ Returns:
35
+ tuple: (list of evaluation results, total cost)
36
+ """
37
+ manager = Manager()
38
+ work_queue = manager.Queue()
39
+ result_queue = manager.Queue()
40
+
41
+ # Add data to the work queue
42
+ dataset_list = list(dataset) if not isinstance(dataset, list) else dataset
43
+ for data in dataset_list:
44
+ work_queue.put(data)
45
+
46
+ # Add termination signals for workers
47
+ for _ in range(num_workers):
48
+ work_queue.put(None)
49
+
50
+ # Start parallel processing
51
+ processes = []
52
+ for _ in range(num_workers):
53
+ p = Process(target=worker_main, args=(work_queue, result_queue, process_func, config))
54
+ p.start()
55
+ processes.append(p)
56
+
57
+ # Show progress bar and collect results
58
+ process_results = []
59
+ process_cost = 0
60
+ completed_workers = 0
61
+
62
+ with tqdm(total=len(dataset_list), desc=description) as pbar:
63
+ while completed_workers < num_workers:
64
+ result_item = result_queue.get()
65
+ if result_item is None:
66
+ completed_workers += 1
67
+ else:
68
+ results, cost = result_item
69
+ if results is not None:
70
+ process_results.append(results)
71
+ process_cost += cost if cost is not None else 0
72
+ pbar.update(1)
73
+
74
+ # Wait for all processes to finish
75
+ for p in processes:
76
+ p.join()
77
+
78
+ # Collect remaining results
79
+ while not result_queue.empty():
80
+ result_item = result_queue.get_nowait()
81
+ if result_item is not None:
82
+ results, cost = result_item
83
+ if results is not None:
84
+ process_results.append(results)
85
+ process_cost += cost if cost is not None else 0
86
+
87
+ return process_results, process_cost
agent/mini_bench/prompts/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .construct_messages import get_messages
agent/mini_bench/prompts/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (263 Bytes). View file
 
agent/mini_bench/prompts/__pycache__/action.cpython-311.pyc ADDED
Binary file (2.85 kB). View file
 
agent/mini_bench/prompts/__pycache__/checklist_prompt.cpython-311.pyc ADDED
Binary file (3.11 kB). View file
 
agent/mini_bench/prompts/__pycache__/construct_messages.cpython-311.pyc ADDED
Binary file (15 kB). View file
 
agent/mini_bench/prompts/__pycache__/eval_type.cpython-311.pyc ADDED
Binary file (5.46 kB). View file
 
agent/mini_bench/prompts/__pycache__/image_utils.cpython-311.pyc ADDED
Binary file (1.71 kB). View file
 
agent/mini_bench/prompts/__pycache__/input_information.cpython-311.pyc ADDED
Binary file (1.03 kB). View file
 
agent/mini_bench/prompts/__pycache__/judge_prompt.cpython-311.pyc ADDED
Binary file (5.64 kB). View file