#!/usr/bin/env python import os import gradio as gr import numpy as np import PIL.Image import spaces import torch from diffusers import AutoencoderKL, DiffusionPipeline DESCRIPTION = "# SDXL" MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024")) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) pipe = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", vae=vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16", ).to(device) refiner = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16", ).to(device) def get_seed(randomize_seed: bool, seed: int) -> int: """Determine and return the random seed to use for model generation or sampling. - MAX_SEED is the maximum value for a 32-bit integer (np.iinfo(np.int32).max). - This function is typically used to ensure reproducibility or to introduce randomness in model generation. - The random seed affects the stochastic processes in downstream model inference or sampling. Args: randomize_seed (bool): If True, a random seed (an integer in [0, MAX_SEED)) is generated using NumPy's default random number generator. If False, the provided seed argument is returned as-is. seed (int): The seed value to use if randomize_seed is False. Returns: int: The selected seed value. If randomize_seed is True, a randomly generated integer; otherwise, the value of the seed argument. """ rng = np.random.default_rng() return int(rng.integers(0, MAX_SEED)) if randomize_seed else seed @spaces.GPU def generate( prompt: str, negative_prompt: str = "", prompt_2: str = "", negative_prompt_2: str = "", use_negative_prompt: bool = False, use_prompt_2: bool = False, use_negative_prompt_2: bool = False, seed: int = 0, width: int = 1024, height: int = 1024, guidance_scale_base: float = 5.0, guidance_scale_refiner: float = 5.0, num_inference_steps_base: int = 25, num_inference_steps_refiner: int = 25, apply_refiner: bool = False, progress: gr.Progress = gr.Progress(track_tqdm=True), # noqa: ARG001, B008 ) -> PIL.Image.Image: """Generates an image from a text prompt using the SDXL (Stable Diffusion XL) model. This function allows fine-grained control over image generation through prompts, negative prompts, and optional refinement stages. Note: All prompt-related inputs (e.g., `prompt`, `negative_prompt`, `prompt_2`, and `negative_prompt_2`) must be written in English for proper model performance. Args: prompt (str): Main text prompt used to guide image generation. negative_prompt (str, optional): Text specifying elements to exclude from the image. prompt_2 (str, optional): Secondary prompt for additional guidance. Used only if `use_prompt_2` is True. negative_prompt_2 (str, optional): Secondary negative prompt. Used only if `use_negative_prompt_2` is True. use_negative_prompt (bool, optional): Whether to apply `negative_prompt` during generation. use_prompt_2 (bool, optional): Whether to apply `prompt_2` during generation. use_negative_prompt_2 (bool, optional): Whether to apply `negative_prompt_2` during generation. seed (int, optional): Seed for random number generation. Use 0 to generate a random seed. width (int, optional): Width of the output image in pixels. height (int, optional): Height of the output image in pixels. guidance_scale_base (float, optional): Guidance scale for the base model. Higher values follow the prompt more closely. guidance_scale_refiner (float, optional): Guidance scale for the refiner model. num_inference_steps_base (int, optional): Number of inference steps for the base model. num_inference_steps_refiner (int, optional): Number of inference steps for the refiner model. apply_refiner (bool, optional): Whether to apply the refiner stage after the base image is generated. progress (gr.Progress, optional): Gradio progress object to show progress during generation. Returns: PIL.Image.Image: The generated image as a PIL Image object. """ generator = torch.Generator().manual_seed(seed) if not use_negative_prompt: negative_prompt = None # type: ignore if not use_prompt_2: prompt_2 = None # type: ignore if not use_negative_prompt_2: negative_prompt_2 = None # type: ignore if not apply_refiner: return pipe( prompt=prompt, negative_prompt=negative_prompt, prompt_2=prompt_2, negative_prompt_2=negative_prompt_2, width=width, height=height, guidance_scale=guidance_scale_base, num_inference_steps=num_inference_steps_base, generator=generator, output_type="pil", ).images[0] latents = pipe( prompt=prompt, negative_prompt=negative_prompt, prompt_2=prompt_2, negative_prompt_2=negative_prompt_2, width=width, height=height, guidance_scale=guidance_scale_base, num_inference_steps=num_inference_steps_base, generator=generator, output_type="latent", ).images images = refiner( prompt=prompt, negative_prompt=negative_prompt, prompt_2=prompt_2, negative_prompt_2=negative_prompt_2, guidance_scale=guidance_scale_refiner, num_inference_steps=num_inference_steps_refiner, image=latents, generator=generator, ).images return images[0] examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", ] with gr.Blocks(css_paths="style.css") as demo: gr.Markdown(DESCRIPTION) with gr.Group(): with gr.Row(): prompt = gr.Textbox( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", submit_btn=True, ) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced options", open=False): with gr.Row(): use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False) use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False) use_negative_prompt_2 = gr.Checkbox(label="Use negative prompt 2", value=False) negative_prompt = gr.Textbox( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False, value="", ) prompt_2 = gr.Textbox( label="Prompt 2", max_lines=1, placeholder="Enter your prompt", visible=False, value="", ) negative_prompt_2 = gr.Textbox( label="Negative prompt 2", max_lines=1, placeholder="Enter a negative prompt", visible=False, value="", ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) apply_refiner = gr.Checkbox(label="Apply refiner", value=True) with gr.Row(): guidance_scale_base = gr.Slider( label="Guidance scale for base", minimum=1, maximum=20, step=0.1, value=5.0, ) num_inference_steps_base = gr.Slider( label="Number of inference steps for base", minimum=10, maximum=100, step=1, value=25, ) with gr.Row() as refiner_params: guidance_scale_refiner = gr.Slider( label="Guidance scale for refiner", minimum=1, maximum=20, step=0.1, value=5.0, ) num_inference_steps_refiner = gr.Slider( label="Number of inference steps for refiner", minimum=10, maximum=100, step=1, value=25, ) gr.Examples( examples=examples, inputs=prompt, outputs=result, fn=generate, ) use_negative_prompt.change( fn=lambda x: gr.Textbox(visible=x), inputs=use_negative_prompt, outputs=negative_prompt, queue=False, api_name=False, ) use_prompt_2.change( fn=lambda x: gr.Textbox(visible=x), inputs=use_prompt_2, outputs=prompt_2, queue=False, api_name=False, ) use_negative_prompt_2.change( fn=lambda x: gr.Textbox(visible=x), inputs=use_negative_prompt_2, outputs=negative_prompt_2, queue=False, api_name=False, ) apply_refiner.change( fn=lambda x: gr.Row(visible=x), inputs=apply_refiner, outputs=refiner_params, queue=False, api_name=False, ) gr.on( triggers=[ prompt.submit, negative_prompt.submit, prompt_2.submit, negative_prompt_2.submit, ], fn=get_seed, inputs=[randomize_seed, seed], outputs=seed, queue=False, ).then( fn=generate, inputs=[ prompt, negative_prompt, prompt_2, negative_prompt_2, use_negative_prompt, use_prompt_2, use_negative_prompt_2, seed, width, height, guidance_scale_base, guidance_scale_refiner, num_inference_steps_base, num_inference_steps_refiner, apply_refiner, ], outputs=result, api_name="predict", ) if __name__ == "__main__": demo.launch(mcp_server=True)