Add files
Browse files- .pre-commit-config.yaml +33 -0
- .python-version +1 -0
- .vscode/extensions.json +8 -0
- .vscode/settings.json +17 -0
- README.md +2 -2
- app.py +154 -84
- pyproject.toml +84 -0
- requirements.txt +452 -22
- uv.lock +0 -0
.pre-commit-config.yaml
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
repos:
|
2 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
3 |
+
rev: v5.0.0
|
4 |
+
hooks:
|
5 |
+
- id: check-executables-have-shebangs
|
6 |
+
- id: check-json
|
7 |
+
- id: check-merge-conflict
|
8 |
+
- id: check-shebang-scripts-are-executable
|
9 |
+
- id: check-toml
|
10 |
+
- id: check-yaml
|
11 |
+
- id: end-of-file-fixer
|
12 |
+
- id: mixed-line-ending
|
13 |
+
args: ["--fix=lf"]
|
14 |
+
- id: requirements-txt-fixer
|
15 |
+
- id: trailing-whitespace
|
16 |
+
- repo: https://github.com/astral-sh/ruff-pre-commit
|
17 |
+
rev: v0.11.11
|
18 |
+
hooks:
|
19 |
+
- id: ruff-check
|
20 |
+
args: ["--fix"]
|
21 |
+
- id: ruff-format
|
22 |
+
- repo: https://github.com/pre-commit/mirrors-mypy
|
23 |
+
rev: v1.15.0
|
24 |
+
hooks:
|
25 |
+
- id: mypy
|
26 |
+
args: ["--ignore-missing-imports"]
|
27 |
+
additional_dependencies:
|
28 |
+
[
|
29 |
+
"types-python-slugify",
|
30 |
+
"types-pytz",
|
31 |
+
"types-PyYAML",
|
32 |
+
"types-requests",
|
33 |
+
]
|
.python-version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
3.10
|
.vscode/extensions.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"recommendations": [
|
3 |
+
"ms-python.python",
|
4 |
+
"charliermarsh.ruff",
|
5 |
+
"streetsidesoftware.code-spell-checker",
|
6 |
+
"tamasfe.even-better-toml"
|
7 |
+
]
|
8 |
+
}
|
.vscode/settings.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"editor.formatOnSave": true,
|
3 |
+
"files.insertFinalNewline": false,
|
4 |
+
"[python]": {
|
5 |
+
"editor.defaultFormatter": "charliermarsh.ruff",
|
6 |
+
"editor.formatOnType": true,
|
7 |
+
"editor.codeActionsOnSave": {
|
8 |
+
"source.fixAll.ruff": "explicit",
|
9 |
+
"source.organizeImports": "explicit"
|
10 |
+
}
|
11 |
+
},
|
12 |
+
"[jupyter]": {
|
13 |
+
"files.insertFinalNewline": false
|
14 |
+
},
|
15 |
+
"notebook.output.scrolling": true,
|
16 |
+
"notebook.formatOnSave.enabled": true
|
17 |
+
}
|
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 🏢
|
|
4 |
colorFrom: indigo
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
@@ -13,4 +13,4 @@ short_description: Scalable and Versatile 3D Generation from images
|
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
15 |
|
16 |
-
Paper: https://huggingface.co/papers/2412.01506
|
|
|
4 |
colorFrom: indigo
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.32.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
|
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
15 |
|
16 |
+
Paper: https://huggingface.co/papers/2412.01506
|
app.py
CHANGED
@@ -1,31 +1,45 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import spaces
|
3 |
-
from gradio_litmodel3d import LitModel3D
|
4 |
-
|
5 |
import os
|
|
|
6 |
import shutil
|
7 |
-
|
8 |
from typing import *
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
import imageio
|
|
|
|
|
|
|
12 |
from easydict import EasyDict as edict
|
13 |
from PIL import Image
|
|
|
14 |
from trellis.pipelines import TrellisImageTo3DPipeline
|
15 |
from trellis.representations import Gaussian, MeshExtractResult
|
16 |
-
from trellis.utils import
|
17 |
-
|
18 |
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
-
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)),
|
21 |
os.makedirs(TMP_DIR, exist_ok=True)
|
22 |
|
23 |
|
24 |
def start_session(req: gr.Request):
|
25 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
26 |
os.makedirs(user_dir, exist_ok=True)
|
27 |
-
|
28 |
-
|
29 |
def end_session(req: gr.Request):
|
30 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
31 |
shutil.rmtree(user_dir)
|
@@ -48,10 +62,10 @@ def preprocess_image(image: Image.Image) -> Image.Image:
|
|
48 |
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
|
49 |
"""
|
50 |
Preprocess a list of input images.
|
51 |
-
|
52 |
Args:
|
53 |
images (List[Tuple[Image.Image, str]]): The input images.
|
54 |
-
|
55 |
Returns:
|
56 |
List[Image.Image]: The preprocessed images.
|
57 |
"""
|
@@ -62,41 +76,41 @@ def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image
|
|
62 |
|
63 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
64 |
return {
|
65 |
-
|
66 |
**gs.init_params,
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
},
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
},
|
77 |
}
|
78 |
-
|
79 |
-
|
80 |
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
81 |
gs = Gaussian(
|
82 |
-
aabb=state[
|
83 |
-
sh_degree=state[
|
84 |
-
mininum_kernel_size=state[
|
85 |
-
scaling_bias=state[
|
86 |
-
opacity_bias=state[
|
87 |
-
scaling_activation=state[
|
88 |
)
|
89 |
-
gs._xyz = torch.tensor(state[
|
90 |
-
gs._features_dc = torch.tensor(state[
|
91 |
-
gs._scaling = torch.tensor(state[
|
92 |
-
gs._rotation = torch.tensor(state[
|
93 |
-
gs._opacity = torch.tensor(state[
|
94 |
-
|
95 |
mesh = edict(
|
96 |
-
vertices=torch.tensor(state[
|
97 |
-
faces=torch.tensor(state[
|
98 |
)
|
99 |
-
|
100 |
return gs, mesh
|
101 |
|
102 |
|
@@ -170,12 +184,14 @@ def image_to_3d(
|
|
170 |
},
|
171 |
mode=multiimage_algo,
|
172 |
)
|
173 |
-
video = render_utils.render_video(outputs[
|
174 |
-
video_geo = render_utils.render_video(outputs[
|
175 |
-
video = [
|
176 |
-
|
|
|
|
|
177 |
imageio.mimsave(video_path, video, fps=15)
|
178 |
-
state = pack_state(outputs[
|
179 |
torch.cuda.empty_cache()
|
180 |
return state, video_path
|
181 |
|
@@ -200,8 +216,10 @@ def extract_glb(
|
|
200 |
"""
|
201 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
202 |
gs, mesh = unpack_state(state)
|
203 |
-
glb = postprocessing_utils.to_glb(
|
204 |
-
|
|
|
|
|
205 |
glb.export(glb_path)
|
206 |
torch.cuda.empty_cache()
|
207 |
return glb_path, glb_path
|
@@ -220,19 +238,21 @@ def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
|
220 |
"""
|
221 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
222 |
gs, _ = unpack_state(state)
|
223 |
-
gaussian_path = os.path.join(user_dir,
|
224 |
gs.save_ply(gaussian_path)
|
225 |
torch.cuda.empty_cache()
|
226 |
return gaussian_path, gaussian_path
|
227 |
|
228 |
|
229 |
def prepare_multi_example() -> List[Image.Image]:
|
230 |
-
multi_case = list(
|
|
|
|
|
231 |
images = []
|
232 |
for case in multi_case:
|
233 |
_images = []
|
234 |
for i in range(1, 4):
|
235 |
-
img = Image.open(f
|
236 |
W, H = img.size
|
237 |
img = img.resize((int(W / H * 512), 512))
|
238 |
_images.append(np.array(img))
|
@@ -246,12 +266,12 @@ def split_image(image: Image.Image) -> List[Image.Image]:
|
|
246 |
"""
|
247 |
image = np.array(image)
|
248 |
alpha = image[..., 3]
|
249 |
-
alpha = np.any(alpha>0, axis=0)
|
250 |
start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist()
|
251 |
end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist()
|
252 |
images = []
|
253 |
for s, e in zip(start_pos, end_pos):
|
254 |
-
images.append(Image.fromarray(image[:, s:e+1]))
|
255 |
return [preprocess_image(image) for image in images]
|
256 |
|
257 |
|
@@ -263,39 +283,67 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
263 |
|
264 |
✨New: 1) Experimental multi-image support. 2) Gaussian file extraction.
|
265 |
""")
|
266 |
-
|
267 |
with gr.Row():
|
268 |
with gr.Column():
|
269 |
with gr.Tabs() as input_tabs:
|
270 |
with gr.Tab(label="Single Image", id=0) as single_image_input_tab:
|
271 |
-
image_prompt = gr.Image(
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab:
|
273 |
-
multiimage_prompt = gr.Gallery(
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
gr.Markdown("""
|
275 |
Input different views of the object in separate images.
|
276 |
|
277 |
*NOTE: this is an experimental algorithm without training a specialized model. It may not produce the best results for all images, especially those having different poses or inconsistent details.*
|
278 |
""")
|
279 |
-
|
280 |
with gr.Accordion(label="Generation Settings", open=False):
|
281 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
282 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
283 |
gr.Markdown("Stage 1: Sparse Structure Generation")
|
284 |
with gr.Row():
|
285 |
-
ss_guidance_strength = gr.Slider(
|
286 |
-
|
|
|
|
|
|
|
|
|
287 |
gr.Markdown("Stage 2: Structured Latent Generation")
|
288 |
with gr.Row():
|
289 |
-
slat_guidance_strength = gr.Slider(
|
290 |
-
|
291 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
|
293 |
generate_btn = gr.Button("Generate")
|
294 |
-
|
295 |
with gr.Accordion(label="GLB Extraction Settings", open=False):
|
296 |
-
mesh_simplify = gr.Slider(
|
297 |
-
|
298 |
-
|
|
|
|
|
|
|
|
|
299 |
with gr.Row():
|
300 |
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
301 |
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
@@ -304,13 +352,19 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
304 |
""")
|
305 |
|
306 |
with gr.Column():
|
307 |
-
video_output = gr.Video(
|
308 |
-
|
309 |
-
|
|
|
|
|
310 |
with gr.Row():
|
311 |
-
download_glb = gr.DownloadButton(
|
312 |
-
|
313 |
-
|
|
|
|
|
|
|
|
|
314 |
is_multiimage = gr.State(False)
|
315 |
output_buf = gr.State()
|
316 |
|
@@ -318,7 +372,7 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
318 |
with gr.Row() as single_image_example:
|
319 |
examples = gr.Examples(
|
320 |
examples=[
|
321 |
-
f
|
322 |
for image in os.listdir("assets/example_image")
|
323 |
],
|
324 |
inputs=[image_prompt],
|
@@ -340,16 +394,20 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
340 |
# Handlers
|
341 |
demo.load(start_session)
|
342 |
demo.unload(end_session)
|
343 |
-
|
344 |
single_image_input_tab.select(
|
345 |
-
lambda: tuple(
|
346 |
-
|
|
|
|
|
347 |
)
|
348 |
multiimage_input_tab.select(
|
349 |
-
lambda: tuple(
|
350 |
-
|
|
|
|
|
351 |
)
|
352 |
-
|
353 |
image_prompt.upload(
|
354 |
preprocess_image,
|
355 |
inputs=[image_prompt],
|
@@ -367,7 +425,17 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
367 |
outputs=[seed],
|
368 |
).then(
|
369 |
image_to_3d,
|
370 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
371 |
outputs=[output_buf, video_output],
|
372 |
).then(
|
373 |
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
@@ -387,7 +455,7 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
387 |
lambda: gr.Button(interactive=True),
|
388 |
outputs=[download_glb],
|
389 |
)
|
390 |
-
|
391 |
extract_gs_btn.click(
|
392 |
extract_gaussian,
|
393 |
inputs=[output_buf],
|
@@ -401,14 +469,16 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
401 |
lambda: gr.Button(interactive=False),
|
402 |
outputs=[download_glb],
|
403 |
)
|
404 |
-
|
405 |
|
406 |
# Launch the Gradio app
|
407 |
if __name__ == "__main__":
|
408 |
-
pipeline = TrellisImageTo3DPipeline.from_pretrained("
|
409 |
pipeline.cuda()
|
410 |
try:
|
411 |
-
pipeline.preprocess_image(
|
|
|
|
|
412 |
except:
|
413 |
pass
|
414 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import shlex
|
3 |
import shutil
|
4 |
+
import subprocess
|
5 |
from typing import *
|
6 |
+
|
7 |
+
os.environ["SPCONV_ALGO"] = "native"
|
8 |
+
|
9 |
+
if os.getenv("SPACE_ID"):
|
10 |
+
subprocess.run(
|
11 |
+
shlex.split(
|
12 |
+
"pip install wheels/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl"
|
13 |
+
),
|
14 |
+
check=True,
|
15 |
+
)
|
16 |
+
subprocess.run(
|
17 |
+
shlex.split("pip install wheels/nvdiffrast-0.3.3-cp310-cp310-linux_x86_64.whl"),
|
18 |
+
check=True,
|
19 |
+
)
|
20 |
+
|
21 |
+
import gradio as gr
|
22 |
import imageio
|
23 |
+
import numpy as np
|
24 |
+
import spaces
|
25 |
+
import torch
|
26 |
from easydict import EasyDict as edict
|
27 |
from PIL import Image
|
28 |
+
|
29 |
from trellis.pipelines import TrellisImageTo3DPipeline
|
30 |
from trellis.representations import Gaussian, MeshExtractResult
|
31 |
+
from trellis.utils import postprocessing_utils, render_utils
|
|
|
32 |
|
33 |
MAX_SEED = np.iinfo(np.int32).max
|
34 |
+
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "tmp")
|
35 |
os.makedirs(TMP_DIR, exist_ok=True)
|
36 |
|
37 |
|
38 |
def start_session(req: gr.Request):
|
39 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
40 |
os.makedirs(user_dir, exist_ok=True)
|
41 |
+
|
42 |
+
|
43 |
def end_session(req: gr.Request):
|
44 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
45 |
shutil.rmtree(user_dir)
|
|
|
62 |
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
|
63 |
"""
|
64 |
Preprocess a list of input images.
|
65 |
+
|
66 |
Args:
|
67 |
images (List[Tuple[Image.Image, str]]): The input images.
|
68 |
+
|
69 |
Returns:
|
70 |
List[Image.Image]: The preprocessed images.
|
71 |
"""
|
|
|
76 |
|
77 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
78 |
return {
|
79 |
+
"gaussian": {
|
80 |
**gs.init_params,
|
81 |
+
"_xyz": gs._xyz.cpu().numpy(),
|
82 |
+
"_features_dc": gs._features_dc.cpu().numpy(),
|
83 |
+
"_scaling": gs._scaling.cpu().numpy(),
|
84 |
+
"_rotation": gs._rotation.cpu().numpy(),
|
85 |
+
"_opacity": gs._opacity.cpu().numpy(),
|
86 |
},
|
87 |
+
"mesh": {
|
88 |
+
"vertices": mesh.vertices.cpu().numpy(),
|
89 |
+
"faces": mesh.faces.cpu().numpy(),
|
90 |
},
|
91 |
}
|
92 |
+
|
93 |
+
|
94 |
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
95 |
gs = Gaussian(
|
96 |
+
aabb=state["gaussian"]["aabb"],
|
97 |
+
sh_degree=state["gaussian"]["sh_degree"],
|
98 |
+
mininum_kernel_size=state["gaussian"]["mininum_kernel_size"],
|
99 |
+
scaling_bias=state["gaussian"]["scaling_bias"],
|
100 |
+
opacity_bias=state["gaussian"]["opacity_bias"],
|
101 |
+
scaling_activation=state["gaussian"]["scaling_activation"],
|
102 |
)
|
103 |
+
gs._xyz = torch.tensor(state["gaussian"]["_xyz"], device="cuda")
|
104 |
+
gs._features_dc = torch.tensor(state["gaussian"]["_features_dc"], device="cuda")
|
105 |
+
gs._scaling = torch.tensor(state["gaussian"]["_scaling"], device="cuda")
|
106 |
+
gs._rotation = torch.tensor(state["gaussian"]["_rotation"], device="cuda")
|
107 |
+
gs._opacity = torch.tensor(state["gaussian"]["_opacity"], device="cuda")
|
108 |
+
|
109 |
mesh = edict(
|
110 |
+
vertices=torch.tensor(state["mesh"]["vertices"], device="cuda"),
|
111 |
+
faces=torch.tensor(state["mesh"]["faces"], device="cuda"),
|
112 |
)
|
113 |
+
|
114 |
return gs, mesh
|
115 |
|
116 |
|
|
|
184 |
},
|
185 |
mode=multiimage_algo,
|
186 |
)
|
187 |
+
video = render_utils.render_video(outputs["gaussian"][0], num_frames=120)["color"]
|
188 |
+
video_geo = render_utils.render_video(outputs["mesh"][0], num_frames=120)["normal"]
|
189 |
+
video = [
|
190 |
+
np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))
|
191 |
+
]
|
192 |
+
video_path = os.path.join(user_dir, "sample.mp4")
|
193 |
imageio.mimsave(video_path, video, fps=15)
|
194 |
+
state = pack_state(outputs["gaussian"][0], outputs["mesh"][0])
|
195 |
torch.cuda.empty_cache()
|
196 |
return state, video_path
|
197 |
|
|
|
216 |
"""
|
217 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
218 |
gs, mesh = unpack_state(state)
|
219 |
+
glb = postprocessing_utils.to_glb(
|
220 |
+
gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False
|
221 |
+
)
|
222 |
+
glb_path = os.path.join(user_dir, "sample.glb")
|
223 |
glb.export(glb_path)
|
224 |
torch.cuda.empty_cache()
|
225 |
return glb_path, glb_path
|
|
|
238 |
"""
|
239 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
240 |
gs, _ = unpack_state(state)
|
241 |
+
gaussian_path = os.path.join(user_dir, "sample.ply")
|
242 |
gs.save_ply(gaussian_path)
|
243 |
torch.cuda.empty_cache()
|
244 |
return gaussian_path, gaussian_path
|
245 |
|
246 |
|
247 |
def prepare_multi_example() -> List[Image.Image]:
|
248 |
+
multi_case = list(
|
249 |
+
set([i.split("_")[0] for i in os.listdir("assets/example_multi_image")])
|
250 |
+
)
|
251 |
images = []
|
252 |
for case in multi_case:
|
253 |
_images = []
|
254 |
for i in range(1, 4):
|
255 |
+
img = Image.open(f"assets/example_multi_image/{case}_{i}.png")
|
256 |
W, H = img.size
|
257 |
img = img.resize((int(W / H * 512), 512))
|
258 |
_images.append(np.array(img))
|
|
|
266 |
"""
|
267 |
image = np.array(image)
|
268 |
alpha = image[..., 3]
|
269 |
+
alpha = np.any(alpha > 0, axis=0)
|
270 |
start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist()
|
271 |
end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist()
|
272 |
images = []
|
273 |
for s, e in zip(start_pos, end_pos):
|
274 |
+
images.append(Image.fromarray(image[:, s : e + 1]))
|
275 |
return [preprocess_image(image) for image in images]
|
276 |
|
277 |
|
|
|
283 |
|
284 |
✨New: 1) Experimental multi-image support. 2) Gaussian file extraction.
|
285 |
""")
|
286 |
+
|
287 |
with gr.Row():
|
288 |
with gr.Column():
|
289 |
with gr.Tabs() as input_tabs:
|
290 |
with gr.Tab(label="Single Image", id=0) as single_image_input_tab:
|
291 |
+
image_prompt = gr.Image(
|
292 |
+
label="Image Prompt",
|
293 |
+
format="png",
|
294 |
+
image_mode="RGBA",
|
295 |
+
type="pil",
|
296 |
+
height=300,
|
297 |
+
)
|
298 |
with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab:
|
299 |
+
multiimage_prompt = gr.Gallery(
|
300 |
+
label="Image Prompt",
|
301 |
+
format="png",
|
302 |
+
type="pil",
|
303 |
+
height=300,
|
304 |
+
columns=3,
|
305 |
+
)
|
306 |
gr.Markdown("""
|
307 |
Input different views of the object in separate images.
|
308 |
|
309 |
*NOTE: this is an experimental algorithm without training a specialized model. It may not produce the best results for all images, especially those having different poses or inconsistent details.*
|
310 |
""")
|
311 |
+
|
312 |
with gr.Accordion(label="Generation Settings", open=False):
|
313 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
314 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
315 |
gr.Markdown("Stage 1: Sparse Structure Generation")
|
316 |
with gr.Row():
|
317 |
+
ss_guidance_strength = gr.Slider(
|
318 |
+
0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1
|
319 |
+
)
|
320 |
+
ss_sampling_steps = gr.Slider(
|
321 |
+
1, 50, label="Sampling Steps", value=12, step=1
|
322 |
+
)
|
323 |
gr.Markdown("Stage 2: Structured Latent Generation")
|
324 |
with gr.Row():
|
325 |
+
slat_guidance_strength = gr.Slider(
|
326 |
+
0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1
|
327 |
+
)
|
328 |
+
slat_sampling_steps = gr.Slider(
|
329 |
+
1, 50, label="Sampling Steps", value=12, step=1
|
330 |
+
)
|
331 |
+
multiimage_algo = gr.Radio(
|
332 |
+
["stochastic", "multidiffusion"],
|
333 |
+
label="Multi-image Algorithm",
|
334 |
+
value="stochastic",
|
335 |
+
)
|
336 |
|
337 |
generate_btn = gr.Button("Generate")
|
338 |
+
|
339 |
with gr.Accordion(label="GLB Extraction Settings", open=False):
|
340 |
+
mesh_simplify = gr.Slider(
|
341 |
+
0.9, 0.98, label="Simplify", value=0.95, step=0.01
|
342 |
+
)
|
343 |
+
texture_size = gr.Slider(
|
344 |
+
512, 2048, label="Texture Size", value=1024, step=512
|
345 |
+
)
|
346 |
+
|
347 |
with gr.Row():
|
348 |
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
349 |
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
|
|
352 |
""")
|
353 |
|
354 |
with gr.Column():
|
355 |
+
video_output = gr.Video(
|
356 |
+
label="Generated 3D Asset", autoplay=True, loop=True, height=300
|
357 |
+
)
|
358 |
+
model_output = gr.Model3D(label="Extracted GLB/Gaussian", height=300)
|
359 |
+
|
360 |
with gr.Row():
|
361 |
+
download_glb = gr.DownloadButton(
|
362 |
+
label="Download GLB", interactive=False
|
363 |
+
)
|
364 |
+
download_gs = gr.DownloadButton(
|
365 |
+
label="Download Gaussian", interactive=False
|
366 |
+
)
|
367 |
+
|
368 |
is_multiimage = gr.State(False)
|
369 |
output_buf = gr.State()
|
370 |
|
|
|
372 |
with gr.Row() as single_image_example:
|
373 |
examples = gr.Examples(
|
374 |
examples=[
|
375 |
+
f"assets/example_image/{image}"
|
376 |
for image in os.listdir("assets/example_image")
|
377 |
],
|
378 |
inputs=[image_prompt],
|
|
|
394 |
# Handlers
|
395 |
demo.load(start_session)
|
396 |
demo.unload(end_session)
|
397 |
+
|
398 |
single_image_input_tab.select(
|
399 |
+
lambda: tuple(
|
400 |
+
[False, gr.Row.update(visible=True), gr.Row.update(visible=False)]
|
401 |
+
),
|
402 |
+
outputs=[is_multiimage, single_image_example, multiimage_example],
|
403 |
)
|
404 |
multiimage_input_tab.select(
|
405 |
+
lambda: tuple(
|
406 |
+
[True, gr.Row.update(visible=False), gr.Row.update(visible=True)]
|
407 |
+
),
|
408 |
+
outputs=[is_multiimage, single_image_example, multiimage_example],
|
409 |
)
|
410 |
+
|
411 |
image_prompt.upload(
|
412 |
preprocess_image,
|
413 |
inputs=[image_prompt],
|
|
|
425 |
outputs=[seed],
|
426 |
).then(
|
427 |
image_to_3d,
|
428 |
+
inputs=[
|
429 |
+
image_prompt,
|
430 |
+
multiimage_prompt,
|
431 |
+
is_multiimage,
|
432 |
+
seed,
|
433 |
+
ss_guidance_strength,
|
434 |
+
ss_sampling_steps,
|
435 |
+
slat_guidance_strength,
|
436 |
+
slat_sampling_steps,
|
437 |
+
multiimage_algo,
|
438 |
+
],
|
439 |
outputs=[output_buf, video_output],
|
440 |
).then(
|
441 |
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
|
|
455 |
lambda: gr.Button(interactive=True),
|
456 |
outputs=[download_glb],
|
457 |
)
|
458 |
+
|
459 |
extract_gs_btn.click(
|
460 |
extract_gaussian,
|
461 |
inputs=[output_buf],
|
|
|
469 |
lambda: gr.Button(interactive=False),
|
470 |
outputs=[download_glb],
|
471 |
)
|
472 |
+
|
473 |
|
474 |
# Launch the Gradio app
|
475 |
if __name__ == "__main__":
|
476 |
+
pipeline = TrellisImageTo3DPipeline.from_pretrained("microsoft/TRELLIS-image-large")
|
477 |
pipeline.cuda()
|
478 |
try:
|
479 |
+
pipeline.preprocess_image(
|
480 |
+
Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))
|
481 |
+
) # Preload rembg
|
482 |
except:
|
483 |
pass
|
484 |
+
demo.launch(mcp_server=True)
|
pyproject.toml
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
name = "trellis"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = ""
|
5 |
+
readme = "README.md"
|
6 |
+
requires-python = ">=3.10"
|
7 |
+
dependencies = [
|
8 |
+
"easydict>=1.13",
|
9 |
+
"flash-attn",
|
10 |
+
"gradio[mcp]>=5.32.0",
|
11 |
+
"hf-transfer>=0.1.9",
|
12 |
+
"hf-xet>=1.1.2",
|
13 |
+
"igraph>=0.11.8",
|
14 |
+
"imageio[ffmpeg]>=2.37.0",
|
15 |
+
"onnxruntime>=1.22.0",
|
16 |
+
"opencv-python-headless>=4.11.0.86",
|
17 |
+
"pymeshfix>=0.17.1",
|
18 |
+
"pyvista>=0.45.2",
|
19 |
+
"rembg>=2.0.66",
|
20 |
+
"scipy>=1.15.3",
|
21 |
+
"spaces>=0.36.0",
|
22 |
+
"spconv-cu120>=2.3.6",
|
23 |
+
"torch==2.4.0",
|
24 |
+
"torchvision>=0.19.0",
|
25 |
+
"transformers>=4.52.3",
|
26 |
+
"trimesh>=4.6.10",
|
27 |
+
"utils3d",
|
28 |
+
"xatlas>=0.0.10",
|
29 |
+
"xformers>=0.0.27.post2",
|
30 |
+
]
|
31 |
+
|
32 |
+
[tool.uv.sources]
|
33 |
+
flash-attn = { url = "https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.0.post2/flash_attn-2.7.0.post2+cu12torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl" }
|
34 |
+
utils3d = { git = "https://github.com/EasternJournalist/utils3d.git", rev = "9a4eb15e4021b67b12c460c7057d642626897ec8" }
|
35 |
+
diff-gaussian-rasterization = { path = "wheels/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl" }
|
36 |
+
nvdiffrast = { path = "wheels/nvdiffrast-0.3.3-cp310-cp310-linux_x86_64.whl" }
|
37 |
+
|
38 |
+
[dependency-groups]
|
39 |
+
dev = [
|
40 |
+
"diff-gaussian-rasterization",
|
41 |
+
"nvdiffrast",
|
42 |
+
"setuptools>=80.8.0",
|
43 |
+
]
|
44 |
+
|
45 |
+
#[tool.ruff]
|
46 |
+
#line-length = 119
|
47 |
+
#
|
48 |
+
#[tool.ruff.lint]
|
49 |
+
#select = ["ALL"]
|
50 |
+
#ignore = [
|
51 |
+
# "COM812", # missing-trailing-comma
|
52 |
+
# "D203", # one-blank-line-before-class
|
53 |
+
# "D213", # multi-line-summary-second-line
|
54 |
+
# "E501", # line-too-long
|
55 |
+
# "SIM117", # multiple-with-statements
|
56 |
+
# #
|
57 |
+
# "D100", # undocumented-public-module
|
58 |
+
# "D101", # undocumented-public-class
|
59 |
+
# "D102", # undocumented-public-method
|
60 |
+
# "D103", # undocumented-public-function
|
61 |
+
# "D104", # undocumented-public-package
|
62 |
+
# "D105", # undocumented-magic-method
|
63 |
+
# "D107", # undocumented-public-init
|
64 |
+
# "EM101", # raw-string-in-exception
|
65 |
+
# "FBT001", # boolean-type-hint-positional-argument
|
66 |
+
# "FBT002", # boolean-default-value-positional-argument
|
67 |
+
# "PD901", # pandas-df-variable-name
|
68 |
+
# "PGH003", # blanket-type-ignore
|
69 |
+
# "PLR0913", # too-many-arguments
|
70 |
+
# "PLR0915", # too-many-statements
|
71 |
+
# "TRY003", # raise-vanilla-args
|
72 |
+
#]
|
73 |
+
#unfixable = [
|
74 |
+
# "F401", # unused-import
|
75 |
+
#]
|
76 |
+
#
|
77 |
+
#[tool.ruff.lint.pydocstyle]
|
78 |
+
#convention = "google"
|
79 |
+
#
|
80 |
+
#[tool.ruff.lint.per-file-ignores]
|
81 |
+
#"*.ipynb" = ["T201", "T203"]
|
82 |
+
#
|
83 |
+
#[tool.ruff.format]
|
84 |
+
#docstring-code-format = true
|
requirements.txt
CHANGED
@@ -1,26 +1,456 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
torch==2.4.0
|
|
|
|
|
|
|
|
|
|
|
4 |
torchvision==0.19.0
|
5 |
-
|
6 |
-
imageio==2.36.1
|
7 |
-
imageio-ffmpeg==0.5.1
|
8 |
tqdm==4.67.1
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
xformers==0.0.27.post2
|
21 |
-
|
22 |
-
transformers==4.46.3
|
23 |
-
gradio_litmodel3d==0.0.1
|
24 |
-
https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.0.post2/flash_attn-2.7.0.post2+cu12torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
|
25 |
-
https://huggingface.co/spaces/JeffreyXiang/TRELLIS/resolve/main/wheels/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl?download=true
|
26 |
-
https://huggingface.co/spaces/JeffreyXiang/TRELLIS/resolve/main/wheels/nvdiffrast-0.3.3-cp310-cp310-linux_x86_64.whl?download=true
|
|
|
1 |
+
# This file was autogenerated by uv via the following command:
|
2 |
+
# uv pip compile pyproject.toml -o requirements.txt
|
3 |
+
aiofiles==24.1.0
|
4 |
+
# via gradio
|
5 |
+
annotated-types==0.7.0
|
6 |
+
# via pydantic
|
7 |
+
anyio==4.9.0
|
8 |
+
# via
|
9 |
+
# gradio
|
10 |
+
# httpx
|
11 |
+
# mcp
|
12 |
+
# sse-starlette
|
13 |
+
# starlette
|
14 |
+
attrs==25.3.0
|
15 |
+
# via
|
16 |
+
# jsonschema
|
17 |
+
# referencing
|
18 |
+
ccimport==0.4.4
|
19 |
+
# via
|
20 |
+
# pccm
|
21 |
+
# spconv-cu120
|
22 |
+
certifi==2025.4.26
|
23 |
+
# via
|
24 |
+
# httpcore
|
25 |
+
# httpx
|
26 |
+
# requests
|
27 |
+
charset-normalizer==3.4.2
|
28 |
+
# via requests
|
29 |
+
click==8.2.1
|
30 |
+
# via
|
31 |
+
# typer
|
32 |
+
# uvicorn
|
33 |
+
coloredlogs==15.0.1
|
34 |
+
# via onnxruntime
|
35 |
+
contourpy==1.3.2
|
36 |
+
# via matplotlib
|
37 |
+
cumm-cu120==0.4.11
|
38 |
+
# via spconv-cu120
|
39 |
+
cycler==0.12.1
|
40 |
+
# via matplotlib
|
41 |
+
easydict==1.13
|
42 |
+
# via trellis (pyproject.toml)
|
43 |
+
einops==0.8.1
|
44 |
+
# via flash-attn
|
45 |
+
exceptiongroup==1.3.0
|
46 |
+
# via anyio
|
47 |
+
fastapi==0.115.12
|
48 |
+
# via gradio
|
49 |
+
ffmpy==0.5.0
|
50 |
+
# via gradio
|
51 |
+
filelock==3.18.0
|
52 |
+
# via
|
53 |
+
# huggingface-hub
|
54 |
+
# torch
|
55 |
+
# transformers
|
56 |
+
# triton
|
57 |
+
fire==0.7.0
|
58 |
+
# via
|
59 |
+
# cumm-cu120
|
60 |
+
# pccm
|
61 |
+
# spconv-cu120
|
62 |
+
flash-attn @ https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.0.post2/flash_attn-2.7.0.post2+cu12torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
|
63 |
+
# via trellis (pyproject.toml)
|
64 |
+
flatbuffers==25.2.10
|
65 |
+
# via onnxruntime
|
66 |
+
fonttools==4.58.1
|
67 |
+
# via matplotlib
|
68 |
+
fsspec==2025.5.1
|
69 |
+
# via
|
70 |
+
# gradio-client
|
71 |
+
# huggingface-hub
|
72 |
+
# torch
|
73 |
+
glcontext==3.0.0
|
74 |
+
# via moderngl
|
75 |
+
gradio==5.32.0
|
76 |
+
# via
|
77 |
+
# trellis (pyproject.toml)
|
78 |
+
# spaces
|
79 |
+
gradio-client==1.10.2
|
80 |
+
# via gradio
|
81 |
+
groovy==0.1.2
|
82 |
+
# via gradio
|
83 |
+
h11==0.16.0
|
84 |
+
# via
|
85 |
+
# httpcore
|
86 |
+
# uvicorn
|
87 |
+
hf-transfer==0.1.9
|
88 |
+
# via trellis (pyproject.toml)
|
89 |
+
hf-xet==1.1.2
|
90 |
+
# via
|
91 |
+
# trellis (pyproject.toml)
|
92 |
+
# huggingface-hub
|
93 |
+
httpcore==1.0.9
|
94 |
+
# via httpx
|
95 |
+
httpx==0.28.1
|
96 |
+
# via
|
97 |
+
# gradio
|
98 |
+
# gradio-client
|
99 |
+
# mcp
|
100 |
+
# safehttpx
|
101 |
+
# spaces
|
102 |
+
httpx-sse==0.4.0
|
103 |
+
# via mcp
|
104 |
+
huggingface-hub==0.32.3
|
105 |
+
# via
|
106 |
+
# gradio
|
107 |
+
# gradio-client
|
108 |
+
# tokenizers
|
109 |
+
# transformers
|
110 |
+
humanfriendly==10.0
|
111 |
+
# via coloredlogs
|
112 |
+
idna==3.10
|
113 |
+
# via
|
114 |
+
# anyio
|
115 |
+
# httpx
|
116 |
+
# requests
|
117 |
+
igraph==0.11.8
|
118 |
+
# via trellis (pyproject.toml)
|
119 |
+
imageio==2.37.0
|
120 |
+
# via
|
121 |
+
# trellis (pyproject.toml)
|
122 |
+
# scikit-image
|
123 |
+
imageio-ffmpeg==0.5.1
|
124 |
+
# via imageio
|
125 |
+
jinja2==3.1.6
|
126 |
+
# via
|
127 |
+
# gradio
|
128 |
+
# torch
|
129 |
+
jsonschema==4.24.0
|
130 |
+
# via rembg
|
131 |
+
jsonschema-specifications==2025.4.1
|
132 |
+
# via jsonschema
|
133 |
+
kiwisolver==1.4.8
|
134 |
+
# via matplotlib
|
135 |
+
lark==1.2.2
|
136 |
+
# via pccm
|
137 |
+
lazy-loader==0.4
|
138 |
+
# via scikit-image
|
139 |
+
llvmlite==0.44.0
|
140 |
+
# via numba
|
141 |
+
markdown-it-py==3.0.0
|
142 |
+
# via rich
|
143 |
+
markupsafe==3.0.2
|
144 |
+
# via
|
145 |
+
# gradio
|
146 |
+
# jinja2
|
147 |
+
matplotlib==3.10.3
|
148 |
+
# via
|
149 |
+
# pyvista
|
150 |
+
# vtk
|
151 |
+
mcp==1.9.0
|
152 |
+
# via gradio
|
153 |
+
mdurl==0.1.2
|
154 |
+
# via markdown-it-py
|
155 |
+
moderngl==5.12.0
|
156 |
+
# via utils3d
|
157 |
+
mpmath==1.3.0
|
158 |
+
# via sympy
|
159 |
+
networkx==3.4.2
|
160 |
+
# via
|
161 |
+
# scikit-image
|
162 |
+
# torch
|
163 |
+
ninja==1.11.1.4
|
164 |
+
# via ccimport
|
165 |
+
numba==0.61.2
|
166 |
+
# via pymatting
|
167 |
+
numpy==2.2.6
|
168 |
+
# via
|
169 |
+
# contourpy
|
170 |
+
# cumm-cu120
|
171 |
+
# gradio
|
172 |
+
# imageio
|
173 |
+
# matplotlib
|
174 |
+
# numba
|
175 |
+
# onnxruntime
|
176 |
+
# opencv-python-headless
|
177 |
+
# pandas
|
178 |
+
# plyfile
|
179 |
+
# pymatting
|
180 |
+
# pymeshfix
|
181 |
+
# pyvista
|
182 |
+
# rembg
|
183 |
+
# scikit-image
|
184 |
+
# scipy
|
185 |
+
# spconv-cu120
|
186 |
+
# tifffile
|
187 |
+
# torchvision
|
188 |
+
# transformers
|
189 |
+
# trimesh
|
190 |
+
# utils3d
|
191 |
+
# xformers
|
192 |
+
nvidia-cublas-cu12==12.1.3.1
|
193 |
+
# via
|
194 |
+
# nvidia-cudnn-cu12
|
195 |
+
# nvidia-cusolver-cu12
|
196 |
+
# torch
|
197 |
+
nvidia-cuda-cupti-cu12==12.1.105
|
198 |
+
# via torch
|
199 |
+
nvidia-cuda-nvrtc-cu12==12.1.105
|
200 |
+
# via torch
|
201 |
+
nvidia-cuda-runtime-cu12==12.1.105
|
202 |
+
# via torch
|
203 |
+
nvidia-cudnn-cu12==9.1.0.70
|
204 |
+
# via torch
|
205 |
+
nvidia-cufft-cu12==11.0.2.54
|
206 |
+
# via torch
|
207 |
+
nvidia-curand-cu12==10.3.2.106
|
208 |
+
# via torch
|
209 |
+
nvidia-cusolver-cu12==11.4.5.107
|
210 |
+
# via torch
|
211 |
+
nvidia-cusparse-cu12==12.1.0.106
|
212 |
+
# via
|
213 |
+
# nvidia-cusolver-cu12
|
214 |
+
# torch
|
215 |
+
nvidia-nccl-cu12==2.20.5
|
216 |
+
# via torch
|
217 |
+
nvidia-nvjitlink-cu12==12.9.41
|
218 |
+
# via
|
219 |
+
# nvidia-cusolver-cu12
|
220 |
+
# nvidia-cusparse-cu12
|
221 |
+
nvidia-nvtx-cu12==12.1.105
|
222 |
+
# via torch
|
223 |
+
onnxruntime==1.22.0
|
224 |
+
# via trellis (pyproject.toml)
|
225 |
+
opencv-python-headless==4.11.0.86
|
226 |
+
# via
|
227 |
+
# trellis (pyproject.toml)
|
228 |
+
# rembg
|
229 |
+
orjson==3.10.18
|
230 |
+
# via gradio
|
231 |
+
packaging==25.0
|
232 |
+
# via
|
233 |
+
# gradio
|
234 |
+
# gradio-client
|
235 |
+
# huggingface-hub
|
236 |
+
# lazy-loader
|
237 |
+
# matplotlib
|
238 |
+
# onnxruntime
|
239 |
+
# pooch
|
240 |
+
# scikit-image
|
241 |
+
# spaces
|
242 |
+
# transformers
|
243 |
+
pandas==2.2.3
|
244 |
+
# via gradio
|
245 |
+
pccm==0.4.16
|
246 |
+
# via
|
247 |
+
# cumm-cu120
|
248 |
+
# spconv-cu120
|
249 |
+
pillow==10.4.0
|
250 |
+
# via
|
251 |
+
# gradio
|
252 |
+
# imageio
|
253 |
+
# matplotlib
|
254 |
+
# pymatting
|
255 |
+
# pyvista
|
256 |
+
# rembg
|
257 |
+
# scikit-image
|
258 |
+
# torchvision
|
259 |
+
platformdirs==4.3.8
|
260 |
+
# via pooch
|
261 |
+
plyfile==1.1
|
262 |
+
# via utils3d
|
263 |
+
pooch==1.8.2
|
264 |
+
# via
|
265 |
+
# pyvista
|
266 |
+
# rembg
|
267 |
+
portalocker==3.1.1
|
268 |
+
# via pccm
|
269 |
+
protobuf==6.31.1
|
270 |
+
# via onnxruntime
|
271 |
+
psutil==5.9.8
|
272 |
+
# via
|
273 |
+
# imageio
|
274 |
+
# spaces
|
275 |
+
pybind11==2.13.6
|
276 |
+
# via
|
277 |
+
# ccimport
|
278 |
+
# cumm-cu120
|
279 |
+
# pccm
|
280 |
+
# spconv-cu120
|
281 |
+
pydantic==2.11.5
|
282 |
+
# via
|
283 |
+
# fastapi
|
284 |
+
# gradio
|
285 |
+
# mcp
|
286 |
+
# pydantic-settings
|
287 |
+
# spaces
|
288 |
+
pydantic-core==2.33.2
|
289 |
+
# via pydantic
|
290 |
+
pydantic-settings==2.9.1
|
291 |
+
# via mcp
|
292 |
+
pydub==0.25.1
|
293 |
+
# via gradio
|
294 |
+
pygments==2.19.1
|
295 |
+
# via rich
|
296 |
+
pymatting==1.1.14
|
297 |
+
# via rembg
|
298 |
+
pymeshfix==0.17.1
|
299 |
+
# via trellis (pyproject.toml)
|
300 |
+
pyparsing==3.2.3
|
301 |
+
# via matplotlib
|
302 |
+
python-dateutil==2.9.0.post0
|
303 |
+
# via
|
304 |
+
# matplotlib
|
305 |
+
# pandas
|
306 |
+
python-dotenv==1.1.0
|
307 |
+
# via pydantic-settings
|
308 |
+
python-multipart==0.0.20
|
309 |
+
# via
|
310 |
+
# gradio
|
311 |
+
# mcp
|
312 |
+
pytz==2025.2
|
313 |
+
# via pandas
|
314 |
+
pyvista==0.45.2
|
315 |
+
# via
|
316 |
+
# trellis (pyproject.toml)
|
317 |
+
# pymeshfix
|
318 |
+
pyyaml==6.0.2
|
319 |
+
# via
|
320 |
+
# gradio
|
321 |
+
# huggingface-hub
|
322 |
+
# transformers
|
323 |
+
referencing==0.36.2
|
324 |
+
# via
|
325 |
+
# jsonschema
|
326 |
+
# jsonschema-specifications
|
327 |
+
regex==2024.11.6
|
328 |
+
# via transformers
|
329 |
+
rembg==2.0.66
|
330 |
+
# via trellis (pyproject.toml)
|
331 |
+
requests==2.32.3
|
332 |
+
# via
|
333 |
+
# ccimport
|
334 |
+
# huggingface-hub
|
335 |
+
# pooch
|
336 |
+
# spaces
|
337 |
+
# transformers
|
338 |
+
rich==14.0.0
|
339 |
+
# via typer
|
340 |
+
rpds-py==0.25.1
|
341 |
+
# via
|
342 |
+
# jsonschema
|
343 |
+
# referencing
|
344 |
+
ruff==0.11.12
|
345 |
+
# via gradio
|
346 |
+
safehttpx==0.1.6
|
347 |
+
# via gradio
|
348 |
+
safetensors==0.5.3
|
349 |
+
# via transformers
|
350 |
+
scikit-image==0.25.2
|
351 |
+
# via rembg
|
352 |
+
scipy==1.15.3
|
353 |
+
# via
|
354 |
+
# trellis (pyproject.toml)
|
355 |
+
# pymatting
|
356 |
+
# rembg
|
357 |
+
# scikit-image
|
358 |
+
# utils3d
|
359 |
+
scooby==0.10.1
|
360 |
+
# via pyvista
|
361 |
+
semantic-version==2.10.0
|
362 |
+
# via gradio
|
363 |
+
setuptools==80.9.0
|
364 |
+
# via imageio-ffmpeg
|
365 |
+
shellingham==1.5.4
|
366 |
+
# via typer
|
367 |
+
six==1.17.0
|
368 |
+
# via python-dateutil
|
369 |
+
sniffio==1.3.1
|
370 |
+
# via anyio
|
371 |
+
spaces==0.36.0
|
372 |
+
# via trellis (pyproject.toml)
|
373 |
+
spconv-cu120==2.3.6
|
374 |
+
# via trellis (pyproject.toml)
|
375 |
+
sse-starlette==2.3.6
|
376 |
+
# via mcp
|
377 |
+
starlette==0.46.2
|
378 |
+
# via
|
379 |
+
# fastapi
|
380 |
+
# gradio
|
381 |
+
# mcp
|
382 |
+
sympy==1.14.0
|
383 |
+
# via
|
384 |
+
# onnxruntime
|
385 |
+
# torch
|
386 |
+
termcolor==3.1.0
|
387 |
+
# via fire
|
388 |
+
texttable==1.7.0
|
389 |
+
# via igraph
|
390 |
+
tifffile==2025.5.10
|
391 |
+
# via scikit-image
|
392 |
+
tokenizers==0.21.1
|
393 |
+
# via transformers
|
394 |
+
tomlkit==0.13.2
|
395 |
+
# via gradio
|
396 |
torch==2.4.0
|
397 |
+
# via
|
398 |
+
# trellis (pyproject.toml)
|
399 |
+
# flash-attn
|
400 |
+
# torchvision
|
401 |
+
# xformers
|
402 |
torchvision==0.19.0
|
403 |
+
# via trellis (pyproject.toml)
|
|
|
|
|
404 |
tqdm==4.67.1
|
405 |
+
# via
|
406 |
+
# huggingface-hub
|
407 |
+
# rembg
|
408 |
+
# transformers
|
409 |
+
transformers==4.52.4
|
410 |
+
# via trellis (pyproject.toml)
|
411 |
+
trimesh==4.6.10
|
412 |
+
# via trellis (pyproject.toml)
|
413 |
+
triton==3.0.0
|
414 |
+
# via torch
|
415 |
+
typer==0.16.0
|
416 |
+
# via gradio
|
417 |
+
typing-extensions==4.13.2
|
418 |
+
# via
|
419 |
+
# anyio
|
420 |
+
# exceptiongroup
|
421 |
+
# fastapi
|
422 |
+
# gradio
|
423 |
+
# gradio-client
|
424 |
+
# huggingface-hub
|
425 |
+
# pydantic
|
426 |
+
# pydantic-core
|
427 |
+
# pyvista
|
428 |
+
# referencing
|
429 |
+
# rich
|
430 |
+
# spaces
|
431 |
+
# torch
|
432 |
+
# typer
|
433 |
+
# typing-inspection
|
434 |
+
# uvicorn
|
435 |
+
typing-inspection==0.4.1
|
436 |
+
# via
|
437 |
+
# pydantic
|
438 |
+
# pydantic-settings
|
439 |
+
tzdata==2025.2
|
440 |
+
# via pandas
|
441 |
+
urllib3==2.4.0
|
442 |
+
# via requests
|
443 |
+
utils3d @ git+https://github.com/EasternJournalist/utils3d.git@9a4eb15e4021b67b12c460c7057d642626897ec8
|
444 |
+
# via trellis (pyproject.toml)
|
445 |
+
uvicorn==0.34.2
|
446 |
+
# via
|
447 |
+
# gradio
|
448 |
+
# mcp
|
449 |
+
vtk==9.4.2
|
450 |
+
# via pyvista
|
451 |
+
websockets==15.0.1
|
452 |
+
# via gradio-client
|
453 |
+
xatlas==0.0.10
|
454 |
+
# via trellis (pyproject.toml)
|
455 |
xformers==0.0.27.post2
|
456 |
+
# via trellis (pyproject.toml)
|
|
|
|
|
|
|
|
|
|
uv.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|