Spaces:
Sleeping
Sleeping
Data saving againagain
Browse files
app.py
CHANGED
|
@@ -7,6 +7,7 @@ from mini_agents import MasterAgentWrapper
|
|
| 7 |
from utils import get_full_file_path
|
| 8 |
from smolagents.memory import ActionStep, PlanningStep, TaskStep, SystemPromptStep, FinalAnswerStep
|
| 9 |
from typing import Optional
|
|
|
|
| 10 |
|
| 11 |
# (Keep Constants as is)
|
| 12 |
# --- Constants ---
|
|
@@ -143,39 +144,68 @@ def save_dataset_to_hub(df: pd.DataFrame, dataset_name: str) -> tuple[bool, str]
|
|
| 143 |
# Create a copy of the DataFrame to avoid modifying the original
|
| 144 |
df_to_save = df.copy()
|
| 145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
def ensure_consistent_type(x, column_name):
|
| 147 |
"""Ensure consistent type within a column"""
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
if isinstance(x, dict):
|
| 154 |
-
return str(x)
|
| 155 |
if hasattr(x, 'dict'):
|
| 156 |
-
return str(x.dict())
|
| 157 |
if hasattr(x, '__dict__'):
|
| 158 |
-
return str(x.__dict__)
|
| 159 |
-
return str(x) if pd.notna(x) else None
|
| 160 |
-
|
| 161 |
-
# For other columns, convert to string
|
| 162 |
-
if isinstance(x, (list, tuple, dict)):
|
| 163 |
return str(x)
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
return str(x.__dict__)
|
| 168 |
-
return str(x) if pd.notna(x) else None
|
| 169 |
|
| 170 |
# Convert all columns to consistent types
|
| 171 |
for col in df_to_save.columns:
|
| 172 |
print(f"Converting column: {col}")
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
# Convert to dataset
|
| 181 |
dataset = datasets.Dataset.from_pandas(df_to_save)
|
|
|
|
| 7 |
from utils import get_full_file_path
|
| 8 |
from smolagents.memory import ActionStep, PlanningStep, TaskStep, SystemPromptStep, FinalAnswerStep
|
| 9 |
from typing import Optional
|
| 10 |
+
import numpy as np
|
| 11 |
|
| 12 |
# (Keep Constants as is)
|
| 13 |
# --- Constants ---
|
|
|
|
| 144 |
# Create a copy of the DataFrame to avoid modifying the original
|
| 145 |
df_to_save = df.copy()
|
| 146 |
|
| 147 |
+
def is_none_or_nan(x):
|
| 148 |
+
"""Safely check if a value is None or NaN"""
|
| 149 |
+
if x is None:
|
| 150 |
+
return True
|
| 151 |
+
if isinstance(x, (float, np.floating)) and np.isnan(x):
|
| 152 |
+
return True
|
| 153 |
+
if x == "None" or x == "nan" or x == "NaN":
|
| 154 |
+
return True
|
| 155 |
+
return False
|
| 156 |
+
|
| 157 |
def ensure_consistent_type(x, column_name):
|
| 158 |
"""Ensure consistent type within a column"""
|
| 159 |
+
try:
|
| 160 |
+
if is_none_or_nan(x):
|
| 161 |
+
return None
|
| 162 |
+
|
| 163 |
+
# Special handling for model_input_messages and similar columns
|
| 164 |
+
if column_name in ['model_input_messages', 'model_output_message', 'tool_calls']:
|
| 165 |
+
if isinstance(x, (list, tuple, np.ndarray)):
|
| 166 |
+
# Convert each item in the array/list to string
|
| 167 |
+
return str([str(item) if not is_none_or_nan(item) else None for item in x])
|
| 168 |
+
if isinstance(x, dict):
|
| 169 |
+
return str(x)
|
| 170 |
+
if hasattr(x, 'dict'):
|
| 171 |
+
return str(x.dict())
|
| 172 |
+
if hasattr(x, '__dict__'):
|
| 173 |
+
return str(x.__dict__)
|
| 174 |
+
return str(x)
|
| 175 |
+
|
| 176 |
+
# For other columns, convert to string
|
| 177 |
+
if isinstance(x, (list, tuple, np.ndarray)):
|
| 178 |
+
return str(x.tolist() if hasattr(x, 'tolist') else list(x))
|
| 179 |
if isinstance(x, dict):
|
| 180 |
+
return str(x)
|
| 181 |
if hasattr(x, 'dict'):
|
| 182 |
+
return str(x.dict())
|
| 183 |
if hasattr(x, '__dict__'):
|
| 184 |
+
return str(x.__dict__)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
return str(x)
|
| 186 |
+
except Exception as e:
|
| 187 |
+
print(f"Warning: Error converting value in column {column_name}: {str(e)}")
|
| 188 |
+
return str(x) if not is_none_or_nan(x) else None
|
|
|
|
|
|
|
| 189 |
|
| 190 |
# Convert all columns to consistent types
|
| 191 |
for col in df_to_save.columns:
|
| 192 |
print(f"Converting column: {col}")
|
| 193 |
+
try:
|
| 194 |
+
# Handle numpy arrays and pandas series
|
| 195 |
+
if isinstance(df_to_save[col], (np.ndarray, pd.Series)):
|
| 196 |
+
# Convert None/NaN to None, everything else to string
|
| 197 |
+
df_to_save[col] = df_to_save[col].apply(lambda x: None if is_none_or_nan(x) else str(x))
|
| 198 |
+
else:
|
| 199 |
+
df_to_save[col] = df_to_save[col].apply(lambda x: ensure_consistent_type(x, col))
|
| 200 |
+
|
| 201 |
+
# Verify column type consistency
|
| 202 |
+
sample_values = df_to_save[col].dropna().head()
|
| 203 |
+
if not sample_values.empty:
|
| 204 |
+
print(f"Sample values for {col}: {sample_values.iloc[0]}")
|
| 205 |
+
except Exception as e:
|
| 206 |
+
print(f"Warning: Error processing column {col}: {str(e)}")
|
| 207 |
+
# If there's an error, try to convert the entire column to string
|
| 208 |
+
df_to_save[col] = df_to_save[col].apply(lambda x: None if is_none_or_nan(x) else str(x))
|
| 209 |
|
| 210 |
# Convert to dataset
|
| 211 |
dataset = datasets.Dataset.from_pandas(df_to_save)
|