diff --git "a/index.html" "b/index.html" --- "a/index.html" +++ "b/index.html" @@ -1,4 +1,4 @@ -From Digits to Decisions
Hero background

From Digits to Decisions: How Tokenization Impacts Arithmetic in LLMs

Hugging Face

Recently, there has been a lot of buzz around a seemingly simple question that even state-of-the-art large language models (LLM) fail to answer correctly: "Which is bigger? 9.9 or 9.11"

Despite various attempts and variations of prompting techniques, most frontier models still struggle to make an accurate comparison of the two numbers. This highlights a broader issue many of today's models encounter: they have limited mathematical reasoning capabilities[1]. While there are multiple conjectures of why this is the case, including the composition of pretraining data and the model architecture itself[2], we investigate one of the most fundamental processes in LLMs,tokenization, and how it affects a model's ability to do math, specifically arithmetic problems.

In this blog post, we discuss:

  1. Our detailed approach in comparing different methods of number tokenization
  2. Why reading from right to left is sometimes better than from left to right
  3. A clear frontrunner of tokenization methods for arithmetic in LLMs

A Brief History of Number Tokenization

Back in 2019, The GPT2 paper detailed its use of BPE (byte-pair encoding) as a tokenization method for language models [3]. This approach works by merging frequently occurring subwords into single units until the vocabulary reaches a target size.

Because of how this algorithm operates, the resulting vocabulary depends heavily on the training data fed into the tokenizer. This led to inconsistencies in how numbers are encoded [4]. Commonly seen numbers (i.e. 1-100, years like 1945, etc.) in the training data will likely be represented as a single token, while less frequently seen numbers are split into multiple tokens like below:

BPE (GPT2) Tokenization Heatmap for Numbers 1-1000
This number consists of
1 token
2 tokens
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000

Four years later, the herd of llamas began their stampede! Llama and Llama 2 used SentencePiece's BPE implementation with a notable tweak for numbers: they split all numbers into individual digits [5][6]. This meant there were only 10 unique tokens to represent any number, simplifying numerical representation for LLMs. Deepseek released a model much later (DeepSeek-V2) with a similar single-digit tokenizer [7].

Later on, Llama 3 took a different approach for handling numbers, tokenizing them in groups of three digits [8]. As a result, numbers from 1 to 999 each have unique tokens, while numbers from 1000 onward are composed of these tokens.

A New Paradigm: Right-to-Left Tokenization

So far, the tokenization methods we've seen "processed" text from left to right. For instance, if the three-digit tokenizer encounters the sequence "12345," it will scan from the beginning, breaking it down into segments like "123" and "45".

Right-to-left (R2L) tokenization, on the other hand, processes text from the end to the beginning in groups of three. Using R2L, the sequence "12345" would be tokenized by scanning from the right, first splitting off "345" and then moving to "12." Recently, there has been some exploration too of forcing this R2L tokenization behaviour in frontier closed-source models, which has shown to benefit certain arithmetic operations since the R2L representation prevents the misalignment of the operands [9]. It has also been rumored that Claude uses this R2L tokenization method [10].

To better understand what misalignment looks like, let's take 3789 + 8791 as an example:

Three-digit L2R Tokenization

3789
 8791+
12580

Three-digit R2L Tokenization

3789
 8791+
12580

In the three-digit L2R example, 9 + 1 should map to the digit 0 but ends up grouped together with 8 to form 80, since the first three tokens (125) were already grouped together. This 'shift' in the tokenization boundary produces additional complexity in the learning process which has been shown to be detrimental to accuracy.

In the three-digit R2L example, each digit of 580 aligns neatly with its corresponding sub-operands 789 and 791, which is a more intuitive grouping for the model to learn.

This insight suggests that three-digit R2L tokenization could potentially be improved over the standard three-digit L2R tokenization used by Llama 3.

To recap, here's an overview of the techniques used to handle number tokenization:

How numbers are tokenizedtokenizer (model)
pure BPE; no special handlinggpt2
split to single digitsllama, llama2, deepseek
1-999 has unique tokensllama3
split to groups of three digits (R2L)Claude (?)

Creating a fair comparison of different methods

The goal of this investigation is to compare these tokenizers and their different ways of processing numbers in a way that minimizes the influence of external factors such as model architecture, training configurations, and pre-training data in evaluation results.

Thus, one important design decision we made to address this goal was to evaluate models trained from scratch, where each model has the same data mixture, training configs, and a roughly equal compute budget (number of model parameters and training tokens). The only meaningful difference that each model should have with one another is the tokenizer used to tokenize the training data.

Experimental Setup

We picked 3 tokenizers mentioned previously, namely GPT2's BPE tokenizer, Llama 3's three-digit tokenizer, and Deepseek's single-digit tokenizer.

To test right-to-left tokenization, we created R2L versions of the Pure-BPE and three-digit tokenizers, where numbers would be chunked into groups of 3 digits from the right before being tokenized. We didn't create a R2L version for single-digit tokenization since it would produce the same result since numbers are tokenized to individual digits 1. To achieve this, we added an extra preprocessing step which forces the R2L behaviour without producing additional tokens during inference:

from transformers import AutoTokenizer +From Digits to Decisions
Hero background

From Digits to Decisions: How Tokenization Impacts Arithmetic in LLMs

Hugging Face

Recently, there has been a lot of buzz around a seemingly simple question that even state-of-the-art large language models (LLM) fail to answer correctly: "Which is bigger? 9.9 or 9.11"

Despite various attempts and variations of prompting techniques, most frontier models still struggle to make an accurate comparison of the two numbers. This highlights a broader issue many of today's models encounter: they have limited mathematical reasoning capabilities[1]. While there are multiple conjectures of why this is the case, including the composition of pretraining data and the model architecture itself[2], we investigate one of the most fundamental processes in LLMs, tokenization, and how it affects a model's ability to do math, specifically arithmetic problems.

In this blog post, we discuss:

  1. Our detailed approach in comparing different methods of number tokenization
  2. Why reading from right to left is sometimes better than from left to right
  3. A clear frontrunner of tokenization methods for arithmetic in LLMs

A Brief History of Number Tokenization

Back in 2019, The GPT2 paper detailed its use of BPE (byte-pair encoding) as a tokenization method for language models [3]. This approach works by merging frequently occurring subwords into single units until the vocabulary reaches a target size.

Because of how this algorithm operates, the resulting vocabulary depends heavily on the training data fed into the tokenizer. This led to inconsistencies in how numbers are encoded [4]. Commonly seen numbers (i.e. 1-100, years like 1945, etc.) in the training data will likely be represented as a single token, while less frequently seen numbers are split into multiple tokens like below:

BPE (GPT2) Tokenization Heatmap for Numbers 1-1000
This number consists of
1 token
2 tokens
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000

Four years later, the herd of llamas began their stampede! Llama and Llama 2 used SentencePiece's BPE implementation with a notable tweak for numbers: they split all numbers into individual digits [5][6]. This meant there were only 10 unique tokens to represent any number, simplifying numerical representation for LLMs. Deepseek released a model much later (DeepSeek-V2) with a similar single-digit tokenizer [7].

Later on, Llama 3 took a different approach for handling numbers, tokenizing them in groups of three digits [8]. As a result, numbers from 1 to 999 each have unique tokens, while numbers from 1000 onward are composed of these tokens.

A New Paradigm: Right-to-Left Tokenization

So far, the tokenization methods we've seen "processed" text from left to right. For instance, if the three-digit tokenizer encounters the sequence "12345," it will scan from the beginning, breaking it down into segments like "123" and "45".

Right-to-left (R2L) tokenization, on the other hand, processes text from the end to the beginning in groups of three. Using R2L, the sequence "12345" would be tokenized by scanning from the right, first splitting off "345" and then moving to "12." Recently, there has been some exploration too of forcing this R2L tokenization behaviour in frontier closed-source models, which has shown to benefit certain arithmetic operations since the R2L representation prevents the misalignment of the operands [9]. It has also been rumored that Claude uses this R2L tokenization method [10].

To better understand what misalignment looks like, let's take 3789 + 8791 as an example:

Three-digit L2R Tokenization

3789
 8791+
12580

Three-digit R2L Tokenization

3789
 8791+
12580

In the three-digit L2R example, 9 + 1 should map to the digit 0 but ends up grouped together with 8 to form 80, since the first three tokens (125) were already grouped together. This 'shift' in the tokenization boundary produces additional complexity in the learning process which has been shown to be detrimental to accuracy.

In the three-digit R2L example, each digit of 580 aligns neatly with its corresponding sub-operands 789 and 791, which is a more intuitive grouping for the model to learn.

This insight suggests that three-digit R2L tokenization could potentially be improved over the standard three-digit L2R tokenization used by Llama 3.

To recap, here's an overview of the techniques used to handle number tokenization:

How numbers are tokenizedtokenizer (model)
pure BPE; no special handlinggpt2
split to single digitsllama, llama2, deepseek
1-999 has unique tokensllama3
split to groups of three digits (R2L)Claude (?)

Creating a fair comparison of different methods

The goal of this investigation is to compare these tokenizers and their different ways of processing numbers in a way that minimizes the influence of external factors such as model architecture, training configurations, and pre-training data in evaluation results.

Thus, one important design decision we made to address this goal was to evaluate models trained from scratch, where each model has the same data mixture, training configs, and a roughly equal compute budget (number of model parameters and training tokens). The only meaningful difference that each model should have with one another is the tokenizer used to tokenize the training data.

Experimental Setup

We picked 3 tokenizers mentioned previously, namely GPT2's BPE tokenizer, Llama 3's three-digit tokenizer, and Deepseek's single-digit tokenizer.

To test right-to-left tokenization, we created R2L versions of the Pure-BPE and three-digit tokenizers, where numbers would be chunked into groups of 3 digits from the right before being tokenized. We didn't create a R2L version for single-digit tokenization since it would produce the same result since numbers are tokenized to individual digits 1. To achieve this, we added an extra preprocessing step which forces the R2L behaviour without producing additional tokens during inference:

from transformers import AutoTokenizer from tokenizers import pre_tokenizers, Regex # Initialize all tokenizers @@ -23,4 +23,4 @@ print(tokenizer.tokenize("42069")) # [42, 069] title={From Digits to Decisions: How Tokenization Impacts Arithmetic in LLMs}, author={Garreth Lee, Guilherme Penedo, Leandro von Werra and Thomas Wolf}, url={https://huggingface.co/spaces/huggingface/number-tokenization-blog}, -}

Footnotes

  1. 1. For example, 1234 will be tokenized to [1,2,3,4] regardless if we tokenize from the left or right[↩]
  2. 2. This only applies to non-carry additions. For carry additions, the resulting number will be tokenized differently depending on the direction. For example, 999 + 111 = 1110 would be tokenized as [1, 110] in L2R but [111, 0] in R2L.[↩]
\ No newline at end of file +}

Footnotes

  1. 1. For example, 1234 will be tokenized to [1,2,3,4] regardless if we tokenize from the left or right[↩]
  2. 2. This only applies to non-carry additions. For carry additions, the resulting number will be tokenized differently depending on the direction. For example, 999 + 111 = 1110 would be tokenized as [1, 110] in L2R but [111, 0] in R2L.[↩]
\ No newline at end of file