import gradio as gr from transformers import pipeline from PIL import Image import torch import os import spaces # --- Configuration & Model Loading --- # Use the pipeline, which is more robust as seen in the working example print("Loading MedGemma model via pipeline...") model_loaded = False pipe = None try: pipe = pipeline( "image-to-text", model="google/medgemma-4b-it", model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", token=os.environ.get("HF_TOKEN") ) model_loaded = True print("Model loaded successfully!") except Exception as e: print(f"Error loading model: {e}") # --- Core Chatbot Function --- @spaces.GPU def symptom_checker_chat(user_input, history_for_display, new_image_upload, image_state): """ Manages the conversation using the correct message format derived from the working example. """ if not model_loaded: if user_input: history_for_display.append((user_input, "Error: The model could not be loaded.")) return history_for_display, image_state, None, "" current_image = new_image_upload if new_image_upload is not None else image_state # Build the 'messages' list using the correct format for the pipeline messages = [] # Process the conversation history for user_msg, assistant_msg in history_for_display: messages.append({"role": "user", "content": user_msg}) if assistant_msg: messages.append({"role": "assistant", "content": assistant_msg}) # Add the current user turn messages.append({"role": "user", "content": user_input}) try: # The pipeline call is simpler. We pass the image as the main argument # and the text conversation as the `prompt`. if current_image: # The image goes first, the prompt kwarg contains the conversation history output = pipe(current_image, prompt=messages, generate_kwargs={"max_new_tokens": 512, "do_sample": True, "temperature": 0.7}) else: # If no image, the pipeline can work with just the prompt output = pipe(prompt=messages, generate_kwargs={"max_new_tokens": 512, "do_sample": True, "temperature": 0.7}) # The pipeline output structure contains the full conversation. # We want the content of the last message, which is the model's reply. clean_response = output[0]["generated_text"][-1]['content'] except Exception as e: print(f"Caught a critical exception during generation: {e}", flush=True) clean_response = ( "An error occurred during generation. Details:\n\n" f"```\n{type(e).__name__}: {e}\n```" ) history_for_display.append((user_input, clean_response)) return history_for_display, current_image, None, "" # --- Gradio Interface --- with gr.Blocks(theme=gr.themes.Soft(), css="footer {display: none !important}") as demo: gr.Markdown( """ # AI Symptom Checker powered by MedGemma Describe your symptoms below. For visual symptoms (e.g., a skin rash), upload an image. The AI will analyze the inputs and ask clarifying questions if needed. """ ) image_state = gr.State(None) chatbot = gr.Chatbot(label="Conversation", height=500, bubble_full_width=False, avatar_images=("user.png", "bot.png")) chat_history = gr.State([]) with gr.Row(): image_box = gr.Image(type="pil", label="Upload Image of Symptom (Optional)") with gr.Row(): text_box = gr.Textbox(label="Describe your symptoms...", placeholder="e.g., I have a rash on my arm that is red and itchy...", scale=4) submit_btn = gr.Button("Send", variant="primary", scale=1) def clear_all(): return [], None, None, "" clear_btn = gr.Button("Start New Conversation") clear_btn.click(fn=clear_all, outputs=[chat_history, image_state, image_box, text_box], queue=False) def on_submit(user_input, display_history, new_image, persisted_image): if not user_input.strip() and not new_image: return display_history, persisted_image, None, "" return symptom_checker_chat(user_input, display_history, new_image, persisted_image) # Event Handlers for submit button and enter key submit_btn.click( fn=on_submit, inputs=[text_box, chat_history, image_box, image_state], outputs=[chat_history, image_state, image_box, text_box] ) text_box.submit( fn=on_submit, inputs=[text_box, chat_history, image_box, image_state], outputs=[chat_history, image_state, image_box, text_box] ) if __name__ == "__main__": demo.launch(debug=True)