# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import torch import numpy as np def unproject_depth_map_to_point_map( depth_map: np.ndarray, extrinsics_cam: np.ndarray, intrinsics_cam: np.ndarray ) -> np.ndarray: """ Unproject a batch of depth maps to 3D world coordinates. Args: depth_map (np.ndarray): Batch of depth maps of shape (S, H, W, 1) or (S, H, W) extrinsics_cam (np.ndarray): Batch of camera extrinsic matrices of shape (S, 3, 4) intrinsics_cam (np.ndarray): Batch of camera intrinsic matrices of shape (S, 3, 3) Returns: np.ndarray: Batch of 3D world coordinates of shape (S, H, W, 3) """ if isinstance(depth_map, torch.Tensor): depth_map = depth_map.cpu().numpy() if isinstance(extrinsics_cam, torch.Tensor): extrinsics_cam = extrinsics_cam.cpu().numpy() if isinstance(intrinsics_cam, torch.Tensor): intrinsics_cam = intrinsics_cam.cpu().numpy() world_points_list = [] for frame_idx in range(depth_map.shape[0]): cur_world_points, _, _ = depth_to_world_coords_points( depth_map[frame_idx].squeeze(-1), extrinsics_cam[frame_idx], intrinsics_cam[frame_idx] ) world_points_list.append(cur_world_points) world_points_array = np.stack(world_points_list, axis=0) return world_points_array def depth_to_world_coords_points( depth_map: np.ndarray, extrinsic: np.ndarray, intrinsic: np.ndarray, eps=1e-8, ) : """ Convert a depth map to world coordinates. Args: depth_map (np.ndarray): Depth map of shape (H, W). intrinsic (np.ndarray): Camera intrinsic matrix of shape (3, 3). extrinsic (np.ndarray): Camera extrinsic matrix of shape (3, 4). OpenCV camera coordinate convention, cam from world. Returns: tuple[np.ndarray, np.ndarray]: World coordinates (H, W, 3) and valid depth mask (H, W). """ if depth_map is None: return None, None, None # Valid depth mask point_mask = depth_map > eps # Convert depth map to camera coordinates cam_coords_points = depth_to_cam_coords_points(depth_map, intrinsic) # Multiply with the inverse of extrinsic matrix to transform to world coordinates # extrinsic_inv is 4x4 (note closed_form_inverse_OpenCV is batched, the output is (N, 4, 4)) cam_to_world_extrinsic = closed_form_inverse_se3(extrinsic[None])[0] R_cam_to_world = cam_to_world_extrinsic[:3, :3] t_cam_to_world = cam_to_world_extrinsic[:3, 3] # Apply the rotation and translation to the camera coordinates world_coords_points = np.dot(cam_coords_points, R_cam_to_world.T) + t_cam_to_world # HxWx3, 3x3 -> HxWx3 # world_coords_points = np.einsum("ij,hwj->hwi", R_cam_to_world, cam_coords_points) + t_cam_to_world return world_coords_points, cam_coords_points, point_mask def depth_to_cam_coords_points(depth_map: np.ndarray, intrinsic: np.ndarray) : """ Convert a depth map to camera coordinates. Args: depth_map (np.ndarray): Depth map of shape (H, W). intrinsic (np.ndarray): Camera intrinsic matrix of shape (3, 3). Returns: tuple[np.ndarray, np.ndarray]: Camera coordinates (H, W, 3) """ H, W = depth_map.shape assert intrinsic.shape == (3, 3), "Intrinsic matrix must be 3x3" assert intrinsic[0, 1] == 0 and intrinsic[1, 0] == 0, "Intrinsic matrix must have zero skew" # Intrinsic parameters fu, fv = intrinsic[0, 0], intrinsic[1, 1] cu, cv = intrinsic[0, 2], intrinsic[1, 2] # Generate grid of pixel coordinates u, v = np.meshgrid(np.arange(W), np.arange(H)) # Unproject to camera coordinates x_cam = (u - cu) * depth_map / fu y_cam = (v - cv) * depth_map / fv z_cam = depth_map # Stack to form camera coordinates cam_coords = np.stack((x_cam, y_cam, z_cam), axis=-1).astype(np.float32) return cam_coords def closed_form_inverse_se3(se3, R=None, T=None): """ Compute the inverse of each 4x4 (or 3x4) SE3 matrix in a batch. If `R` and `T` are provided, they must correspond to the rotation and translation components of `se3`. Otherwise, they will be extracted from `se3`. Args: se3: Nx4x4 or Nx3x4 array or tensor of SE3 matrices. R (optional): Nx3x3 array or tensor of rotation matrices. T (optional): Nx3x1 array or tensor of translation vectors. Returns: Inverted SE3 matrices with the same type and device as `se3`. Shapes: se3: (N, 4, 4) R: (N, 3, 3) T: (N, 3, 1) """ # Check if se3 is a numpy array or a torch tensor is_numpy = isinstance(se3, np.ndarray) # Validate shapes if se3.shape[-2:] != (4, 4) and se3.shape[-2:] != (3, 4): raise ValueError(f"se3 must be of shape (N,4,4), got {se3.shape}.") # Extract R and T if not provided if R is None: R = se3[:, :3, :3] # (N,3,3) if T is None: T = se3[:, :3, 3:] # (N,3,1) # Transpose R if is_numpy: # Compute the transpose of the rotation for NumPy R_transposed = np.transpose(R, (0, 2, 1)) # -R^T t for NumPy top_right = -np.matmul(R_transposed, T) inverted_matrix = np.tile(np.eye(4), (len(R), 1, 1)) else: R_transposed = R.transpose(1, 2) # (N,3,3) top_right = -torch.bmm(R_transposed, T) # (N,3,1) inverted_matrix = torch.eye(4, 4)[None].repeat(len(R), 1, 1) inverted_matrix = inverted_matrix.to(R.dtype).to(R.device) inverted_matrix[:, :3, :3] = R_transposed inverted_matrix[:, :3, 3:] = top_right return inverted_matrix