# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # Modified from PyTorch3D, https://github.com/facebookresearch/pytorch3d import torch import numpy as np import torch.nn.functional as F def quat_to_mat(quaternions: torch.Tensor) -> torch.Tensor: """ Quaternion Order: XYZW or say ijkr, scalar-last Convert rotations given as quaternions to rotation matrices. Args: quaternions: quaternions with real part last, as tensor of shape (..., 4). Returns: Rotation matrices as tensor of shape (..., 3, 3). """ i, j, k, r = torch.unbind(quaternions, -1) # pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`. two_s = 2.0 / (quaternions * quaternions).sum(-1) o = torch.stack( ( 1 - two_s * (j * j + k * k), two_s * (i * j - k * r), two_s * (i * k + j * r), two_s * (i * j + k * r), 1 - two_s * (i * i + k * k), two_s * (j * k - i * r), two_s * (i * k - j * r), two_s * (j * k + i * r), 1 - two_s * (i * i + j * j), ), -1, ) return o.reshape(quaternions.shape[:-1] + (3, 3)) def mat_to_quat(matrix: torch.Tensor) -> torch.Tensor: """ Convert rotations given as rotation matrices to quaternions. Args: matrix: Rotation matrices as tensor of shape (..., 3, 3). Returns: quaternions with real part last, as tensor of shape (..., 4). Quaternion Order: XYZW or say ijkr, scalar-last """ if matrix.size(-1) != 3 or matrix.size(-2) != 3: raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.") batch_dim = matrix.shape[:-2] m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(matrix.reshape(batch_dim + (9,)), dim=-1) q_abs = _sqrt_positive_part( torch.stack( [ 1.0 + m00 + m11 + m22, 1.0 + m00 - m11 - m22, 1.0 - m00 + m11 - m22, 1.0 - m00 - m11 + m22, ], dim=-1, ) ) # we produce the desired quaternion multiplied by each of r, i, j, k quat_by_rijk = torch.stack( [ # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and # `int`. torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1), # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and # `int`. torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1), # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and # `int`. torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1), # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and # `int`. torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1), ], dim=-2, ) # We floor here at 0.1 but the exact level is not important; if q_abs is small, # the candidate won't be picked. flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device) quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr)) # if not for numerical problems, quat_candidates[i] should be same (up to a sign), # forall i; we pick the best-conditioned one (with the largest denominator) out = quat_candidates[F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, :].reshape(batch_dim + (4,)) # Convert from rijk to ijkr out = out[..., [1, 2, 3, 0]] out = standardize_quaternion(out) return out def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor: """ Returns torch.sqrt(torch.max(0, x)) but with a zero subgradient where x is 0. """ ret = torch.zeros_like(x) positive_mask = x > 0 if torch.is_grad_enabled(): ret[positive_mask] = torch.sqrt(x[positive_mask]) else: ret = torch.where(positive_mask, torch.sqrt(x), ret) return ret def standardize_quaternion(quaternions: torch.Tensor) -> torch.Tensor: """ Convert a unit quaternion to a standard form: one in which the real part is non negative. Args: quaternions: Quaternions with real part last, as tensor of shape (..., 4). Returns: Standardized quaternions as tensor of shape (..., 4). """ return torch.where(quaternions[..., 3:4] < 0, -quaternions, quaternions)