# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. # References: # https://github.com/facebookresearch/dino/blob/master/vision_transformer.py # https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py import logging import os import warnings from torch import unbind #from xformers.ops import memory_efficient_attention from torch import Tensor from torch import nn import torch.nn.functional as F XFORMERS_AVAILABLE = False class Attention(nn.Module): def __init__( self, dim: int, num_heads: int = 8, qkv_bias: bool = True, proj_bias: bool = True, attn_drop: float = 0.0, proj_drop: float = 0.0, norm_layer: nn.Module = nn.LayerNorm, qk_norm: bool = False, fused_attn: bool = True, # use F.scaled_dot_product_attention or not rope=None, ) -> None: super().__init__() assert dim % num_heads == 0, "dim should be divisible by num_heads" self.num_heads = num_heads self.head_dim = dim // num_heads self.scale = self.head_dim**-0.5 self.fused_attn = fused_attn self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim, bias=proj_bias) self.proj_drop = nn.Dropout(proj_drop) self.rope = rope def forward(self, x: Tensor, pos=None) -> Tensor: B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) q, k = self.q_norm(q), self.k_norm(k) if self.rope is not None: q = self.rope(q, pos) k = self.rope(k, pos) if self.fused_attn: x = F.scaled_dot_product_attention( q, k, v, dropout_p=self.attn_drop.p if self.training else 0.0, ) else: q = q * self.scale attn = q @ k.transpose(-2, -1) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = attn @ v # attn_vis = ((q * self.scale) @ k.transpose(-2, -1)).softmax(dim=-1) # import matplotlib.pyplot as plt # for i in range (attn_vis.shape[0]): # for j in range (attn_vis.shape[1]): # for k in range(7): # _ = attn_vis[i][j][k][7:].reshape(1,1,32,32) # _ = F.interpolate(_, size=(256, 256), mode='nearest') # _ = _.squeeze().cpu().detach().numpy() # os.makedirs("/share/project/cwm/houyuan.chen/UPS_Lightning/plot/results/Net2_v15_epoch5_vis_for_goblet_attn_map/", exist_ok=True) # plt.imsave(f"/share/project/cwm/houyuan.chen/UPS_Lightning/plot/results/Net2_v15_epoch5_vis_for_goblet_attn_map/attn_vis_img_{i}_head_{j}_token_{k}.png", _) x = x.transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class MemEffAttention(Attention): def forward(self, x: Tensor, attn_bias=None, pos=None) -> Tensor: assert pos is None if not XFORMERS_AVAILABLE: if attn_bias is not None: raise AssertionError("xFormers is required for using nested tensors") return super().forward(x) B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) q, k, v = unbind(qkv, 2) x = memory_efficient_attention(q, k, v, attn_bias=attn_bias) x = x.reshape([B, N, C]) x = self.proj(x) x = self.proj_drop(x) return x