Spaces:
Running
on
Zero
Running
on
Zero
houyuanchen111
commited on
Commit
·
060dc3d
1
Parent(s):
dd0823d
app
Browse files
app.py
CHANGED
@@ -39,7 +39,7 @@ import tempfile
|
|
39 |
from PIL import Image
|
40 |
import glob
|
41 |
from src.data import DemoData
|
42 |
-
from src.models import
|
43 |
from torch.utils.data import DataLoader
|
44 |
import pytorch_lightning as pl
|
45 |
import spaces
|
@@ -206,7 +206,7 @@ with gr.Blocks(css="footer {visibility: hidden}") as demo:
|
|
206 |
with gr.Row():
|
207 |
gr.Markdown(
|
208 |
"""
|
209 |
-
|
210 |
|
211 |
* **Light-Agnostic:** Does not require specific lighting parameters as input.
|
212 |
* **Arbitrary-Resolution:** Supports inputs of any resolution.
|
@@ -222,7 +222,7 @@ with gr.Blocks(css="footer {visibility: hidden}") as demo:
|
|
222 |
|
223 |
2. **Upload Your Mask (Optional)**: A mask is not required for scene reconstruction. However, to reconstruct the normal map for a specific **object**, providing a mask is highly recommended. Use the "Mask" button on the left.
|
224 |
|
225 |
-
3. **Reconstruct**: Click the "Run" button to start the reconstruction process. You can use the slider in "Advanced Settings" to control the number of multi-light images used by
|
226 |
|
227 |
4. **Visualize**: The result will appear in the "Normal Output" viewer on the right. If you use one of our provided examples that includes a ground truth normal map, it will be displayed in the "Ground Truth" viewer for comparison.
|
228 |
|
@@ -271,7 +271,7 @@ with gr.Blocks(css="footer {visibility: hidden}") as demo:
|
|
271 |
|
272 |
with gr.Column(scale=2):
|
273 |
with gr.Tabs():
|
274 |
-
with gr.Tab("
|
275 |
with gr.Row(scale=3):
|
276 |
normal_output = gr.Image(label="Normal Output",height=700,)
|
277 |
normal_gt = gr.Image(label="Ground Truth",height=700)
|
@@ -378,8 +378,9 @@ if __name__ == "__main__":
|
|
378 |
|
379 |
hi3dgen_pipeline = Hi3DGenPipeline.from_pretrained("weights/trellis-normal-v0-1")
|
380 |
hi3dgen_pipeline.cuda()
|
381 |
-
lino =
|
382 |
lino.from_pretrained("weights/lino/lino.pth")
|
383 |
|
384 |
demo.launch(share=False, server_name="0.0.0.0")
|
385 |
|
|
|
|
39 |
from PIL import Image
|
40 |
import glob
|
41 |
from src.data import DemoData
|
42 |
+
from src.models import LINO_UniPS
|
43 |
from torch.utils.data import DataLoader
|
44 |
import pytorch_lightning as pl
|
45 |
import spaces
|
|
|
206 |
with gr.Row():
|
207 |
gr.Markdown(
|
208 |
"""
|
209 |
+
LINO-UniPS is a method for Univeral Photometric Stereo. It predicts the normal map from a given set of images. Key features include:
|
210 |
|
211 |
* **Light-Agnostic:** Does not require specific lighting parameters as input.
|
212 |
* **Arbitrary-Resolution:** Supports inputs of any resolution.
|
|
|
222 |
|
223 |
2. **Upload Your Mask (Optional)**: A mask is not required for scene reconstruction. However, to reconstruct the normal map for a specific **object**, providing a mask is highly recommended. Use the "Mask" button on the left.
|
224 |
|
225 |
+
3. **Reconstruct**: Click the "Run" button to start the reconstruction process. You can use the slider in "Advanced Settings" to control the number of multi-light images used by LINO-UniPS. Note: If the selected number exceeds the total number of uploaded images, the maximum available number will be used instead.
|
226 |
|
227 |
4. **Visualize**: The result will appear in the "Normal Output" viewer on the right. If you use one of our provided examples that includes a ground truth normal map, it will be displayed in the "Ground Truth" viewer for comparison.
|
228 |
|
|
|
271 |
|
272 |
with gr.Column(scale=2):
|
273 |
with gr.Tabs():
|
274 |
+
with gr.Tab("LINO-UniPS Output"):
|
275 |
with gr.Row(scale=3):
|
276 |
normal_output = gr.Image(label="Normal Output",height=700,)
|
277 |
normal_gt = gr.Image(label="Ground Truth",height=700)
|
|
|
378 |
|
379 |
hi3dgen_pipeline = Hi3DGenPipeline.from_pretrained("weights/trellis-normal-v0-1")
|
380 |
hi3dgen_pipeline.cuda()
|
381 |
+
lino = LINO_UniPS()
|
382 |
lino.from_pretrained("weights/lino/lino.pth")
|
383 |
|
384 |
demo.launch(share=False, server_name="0.0.0.0")
|
385 |
|
386 |
+
|