algohunt
initial_commit
c295391
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
from .rotation import quat_to_mat, mat_to_quat
def extri_intri_to_pose_encoding(
extrinsics,
intrinsics,
image_size_hw=None, # e.g., (256, 512)
pose_encoding_type="absT_quaR_FoV",
):
"""Convert camera extrinsics and intrinsics to a compact pose encoding.
This function transforms camera parameters into a unified pose encoding format,
which can be used for various downstream tasks like pose prediction or representation.
Args:
extrinsics (torch.Tensor): Camera extrinsic parameters with shape BxSx3x4,
where B is batch size and S is sequence length.
In OpenCV coordinate system (x-right, y-down, z-forward), representing camera from world transformation.
The format is [R|t] where R is a 3x3 rotation matrix and t is a 3x1 translation vector.
intrinsics (torch.Tensor): Camera intrinsic parameters with shape BxSx3x3.
Defined in pixels, with format:
[[fx, 0, cx],
[0, fy, cy],
[0, 0, 1]]
where fx, fy are focal lengths and (cx, cy) is the principal point
image_size_hw (tuple): Tuple of (height, width) of the image in pixels.
Required for computing field of view values. For example: (256, 512).
pose_encoding_type (str): Type of pose encoding to use. Currently only
supports "absT_quaR_FoV" (absolute translation, quaternion rotation, field of view).
Returns:
torch.Tensor: Encoded camera pose parameters with shape BxSx9.
For "absT_quaR_FoV" type, the 9 dimensions are:
- [:3] = absolute translation vector T (3D)
- [3:7] = rotation as quaternion quat (4D)
- [7:] = field of view (2D)
"""
# extrinsics: BxSx3x4
# intrinsics: BxSx3x3
if pose_encoding_type == "absT_quaR_FoV":
R = extrinsics[:, :, :3, :3] # BxSx3x3
T = extrinsics[:, :, :3, 3] # BxSx3
quat = mat_to_quat(R)
# Note the order of h and w here
H, W = image_size_hw
fov_h = 2 * torch.atan((H / 2) / intrinsics[..., 1, 1])
fov_w = 2 * torch.atan((W / 2) / intrinsics[..., 0, 0])
pose_encoding = torch.cat([T, quat, fov_h[..., None], fov_w[..., None]], dim=-1).float()
else:
raise NotImplementedError
return pose_encoding
def pose_encoding_to_extri_intri(
pose_encoding,
image_size_hw=None, # e.g., (256, 512)
pose_encoding_type="absT_quaR_FoV",
build_intrinsics=True,
):
"""Convert a pose encoding back to camera extrinsics and intrinsics.
This function performs the inverse operation of extri_intri_to_pose_encoding,
reconstructing the full camera parameters from the compact encoding.
Args:
pose_encoding (torch.Tensor): Encoded camera pose parameters with shape BxSx9,
where B is batch size and S is sequence length.
For "absT_quaR_FoV" type, the 9 dimensions are:
- [:3] = absolute translation vector T (3D)
- [3:7] = rotation as quaternion quat (4D)
- [7:] = field of view (2D)
image_size_hw (tuple): Tuple of (height, width) of the image in pixels.
Required for reconstructing intrinsics from field of view values.
For example: (256, 512).
pose_encoding_type (str): Type of pose encoding used. Currently only
supports "absT_quaR_FoV" (absolute translation, quaternion rotation, field of view).
build_intrinsics (bool): Whether to reconstruct the intrinsics matrix.
If False, only extrinsics are returned and intrinsics will be None.
Returns:
tuple: (extrinsics, intrinsics)
- extrinsics (torch.Tensor): Camera extrinsic parameters with shape BxSx3x4.
In OpenCV coordinate system (x-right, y-down, z-forward), representing camera from world
transformation. The format is [R|t] where R is a 3x3 rotation matrix and t is
a 3x1 translation vector.
- intrinsics (torch.Tensor or None): Camera intrinsic parameters with shape BxSx3x3,
or None if build_intrinsics is False. Defined in pixels, with format:
[[fx, 0, cx],
[0, fy, cy],
[0, 0, 1]]
where fx, fy are focal lengths and (cx, cy) is the principal point,
assumed to be at the center of the image (W/2, H/2).
"""
intrinsics = None
if pose_encoding_type == "absT_quaR_FoV":
T = pose_encoding[..., :3]
quat = pose_encoding[..., 3:7]
fov_h = pose_encoding[..., 7]
fov_w = pose_encoding[..., 8]
R = quat_to_mat(quat)
extrinsics = torch.cat([R, T[..., None]], dim=-1)
if build_intrinsics:
H, W = image_size_hw
fy = (H / 2.0) / torch.tan(fov_h / 2.0)
fx = (W / 2.0) / torch.tan(fov_w / 2.0)
intrinsics = torch.zeros(pose_encoding.shape[:2] + (3, 3), device=pose_encoding.device)
intrinsics[..., 0, 0] = fx
intrinsics[..., 1, 1] = fy
intrinsics[..., 0, 2] = W / 2
intrinsics[..., 1, 2] = H / 2
intrinsics[..., 2, 2] = 1.0 # Set the homogeneous coordinate to 1
else:
raise NotImplementedError
return extrinsics, intrinsics