algohunt
initial_commit
c295391
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the Apache License, Version 2.0
# found in the LICENSE file in the root directory of this source tree.
# Implementation of 2D Rotary Position Embeddings (RoPE).
# This module provides a clean implementation of 2D Rotary Position Embeddings,
# which extends the original RoPE concept to handle 2D spatial positions.
# Inspired by:
# https://github.com/meta-llama/codellama/blob/main/llama/model.py
# https://github.com/naver-ai/rope-vit
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Dict, Tuple
class PositionGetter:
"""Generates and caches 2D spatial positions for patches in a grid.
This class efficiently manages the generation of spatial coordinates for patches
in a 2D grid, caching results to avoid redundant computations.
Attributes:
position_cache: Dictionary storing precomputed position tensors for different
grid dimensions.
"""
def __init__(self):
"""Initializes the position generator with an empty cache."""
self.position_cache: Dict[Tuple[int, int], torch.Tensor] = {}
def __call__(self, batch_size: int, height: int, width: int, device: torch.device) -> torch.Tensor:
"""Generates spatial positions for a batch of patches.
Args:
batch_size: Number of samples in the batch.
height: Height of the grid in patches.
width: Width of the grid in patches.
device: Target device for the position tensor.
Returns:
Tensor of shape (batch_size, height*width, 2) containing y,x coordinates
for each position in the grid, repeated for each batch item.
"""
if (height, width) not in self.position_cache:
y_coords = torch.arange(height, device=device)
x_coords = torch.arange(width, device=device)
positions = torch.cartesian_prod(y_coords, x_coords)
self.position_cache[height, width] = positions
cached_positions = self.position_cache[height, width]
return cached_positions.view(1, height * width, 2).expand(batch_size, -1, -1).clone()
class RotaryPositionEmbedding2D(nn.Module):
"""2D Rotary Position Embedding implementation.
This module applies rotary position embeddings to input tokens based on their
2D spatial positions. It handles the position-dependent rotation of features
separately for vertical and horizontal dimensions.
Args:
frequency: Base frequency for the position embeddings. Default: 100.0
scaling_factor: Scaling factor for frequency computation. Default: 1.0
Attributes:
base_frequency: Base frequency for computing position embeddings.
scaling_factor: Factor to scale the computed frequencies.
frequency_cache: Cache for storing precomputed frequency components.
"""
def __init__(self, frequency: float = 100.0, scaling_factor: float = 1.0):
"""Initializes the 2D RoPE module."""
super().__init__()
self.base_frequency = frequency
self.scaling_factor = scaling_factor
self.frequency_cache: Dict[Tuple, Tuple[torch.Tensor, torch.Tensor]] = {}
def _compute_frequency_components(
self, dim: int, seq_len: int, device: torch.device, dtype: torch.dtype
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Computes frequency components for rotary embeddings.
Args:
dim: Feature dimension (must be even).
seq_len: Maximum sequence length.
device: Target device for computations.
dtype: Data type for the computed tensors.
Returns:
Tuple of (cosine, sine) tensors for frequency components.
"""
cache_key = (dim, seq_len, device, dtype)
if cache_key not in self.frequency_cache:
# Compute frequency bands
exponents = torch.arange(0, dim, 2, device=device).float() / dim
inv_freq = 1.0 / (self.base_frequency**exponents)
# Generate position-dependent frequencies
positions = torch.arange(seq_len, device=device, dtype=inv_freq.dtype)
angles = torch.einsum("i,j->ij", positions, inv_freq)
# Compute and cache frequency components
angles = angles.to(dtype)
angles = torch.cat((angles, angles), dim=-1)
cos_components = angles.cos().to(dtype)
sin_components = angles.sin().to(dtype)
self.frequency_cache[cache_key] = (cos_components, sin_components)
return self.frequency_cache[cache_key]
@staticmethod
def _rotate_features(x: torch.Tensor) -> torch.Tensor:
"""Performs feature rotation by splitting and recombining feature dimensions.
Args:
x: Input tensor to rotate.
Returns:
Rotated feature tensor.
"""
feature_dim = x.shape[-1]
x1, x2 = x[..., : feature_dim // 2], x[..., feature_dim // 2 :]
return torch.cat((-x2, x1), dim=-1)
def _apply_1d_rope(
self, tokens: torch.Tensor, positions: torch.Tensor, cos_comp: torch.Tensor, sin_comp: torch.Tensor
) -> torch.Tensor:
"""Applies 1D rotary position embeddings along one dimension.
Args:
tokens: Input token features.
positions: Position indices.
cos_comp: Cosine components for rotation.
sin_comp: Sine components for rotation.
Returns:
Tokens with applied rotary position embeddings.
"""
# Embed positions with frequency components
cos = F.embedding(positions, cos_comp)[:, None, :, :]
sin = F.embedding(positions, sin_comp)[:, None, :, :]
# Apply rotation
return (tokens * cos) + (self._rotate_features(tokens) * sin)
def forward(self, tokens: torch.Tensor, positions: torch.Tensor) -> torch.Tensor:
"""Applies 2D rotary position embeddings to input tokens.
Args:
tokens: Input tensor of shape (batch_size, n_heads, n_tokens, dim).
The feature dimension (dim) must be divisible by 4.
positions: Position tensor of shape (batch_size, n_tokens, 2) containing
the y and x coordinates for each token.
Returns:
Tensor of same shape as input with applied 2D rotary position embeddings.
Raises:
AssertionError: If input dimensions are invalid or positions are malformed.
"""
# Validate inputs
assert tokens.size(-1) % 2 == 0, "Feature dimension must be even"
assert positions.ndim == 3 and positions.shape[-1] == 2, "Positions must have shape (batch_size, n_tokens, 2)"
# Compute feature dimension for each spatial direction
feature_dim = tokens.size(-1) // 2
# Get frequency components
max_position = int(positions.max()) + 1
cos_comp, sin_comp = self._compute_frequency_components(feature_dim, max_position, tokens.device, tokens.dtype)
# Split features for vertical and horizontal processing
vertical_features, horizontal_features = tokens.chunk(2, dim=-1)
# Apply RoPE separately for each dimension
vertical_features = self._apply_1d_rope(vertical_features, positions[..., 0], cos_comp, sin_comp)
horizontal_features = self._apply_1d_rope(horizontal_features, positions[..., 1], cos_comp, sin_comp)
# Combine processed features
return torch.cat((vertical_features, horizontal_features), dim=-1)