algohunt
initial_commit
c295391
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
def position_grid_to_embed(pos_grid: torch.Tensor, embed_dim: int, omega_0: float = 100) -> torch.Tensor:
"""
Convert 2D position grid (HxWx2) to sinusoidal embeddings (HxWxC)
Args:
pos_grid: Tensor of shape (H, W, 2) containing 2D coordinates
embed_dim: Output channel dimension for embeddings
Returns:
Tensor of shape (H, W, embed_dim) with positional embeddings
"""
H, W, grid_dim = pos_grid.shape
assert grid_dim == 2
pos_flat = pos_grid.reshape(-1, grid_dim) # Flatten to (H*W, 2)
# Process x and y coordinates separately
emb_x = make_sincos_pos_embed(embed_dim // 2, pos_flat[:, 0], omega_0=omega_0) # [1, H*W, D/2]
emb_y = make_sincos_pos_embed(embed_dim // 2, pos_flat[:, 1], omega_0=omega_0) # [1, H*W, D/2]
# Combine and reshape
emb = torch.cat([emb_x, emb_y], dim=-1) # [1, H*W, D]
return emb.view(H, W, embed_dim) # [H, W, D]
def make_sincos_pos_embed(embed_dim: int, pos: torch.Tensor, omega_0: float = 100) -> torch.Tensor:
"""
This function generates a 1D positional embedding from a given grid using sine and cosine functions.
Args:
- embed_dim: The embedding dimension.
- pos: The position to generate the embedding from.
Returns:
- emb: The generated 1D positional embedding.
"""
assert embed_dim % 2 == 0
omega = torch.arange(embed_dim // 2, dtype=torch.double, device=pos.device)
omega /= embed_dim / 2.0
omega = 1.0 / omega_0**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = torch.einsum("m,d->md", pos, omega) # (M, D/2), outer product
emb_sin = torch.sin(out) # (M, D/2)
emb_cos = torch.cos(out) # (M, D/2)
emb = torch.cat([emb_sin, emb_cos], dim=1) # (M, D)
return emb.float()
# Inspired by https://github.com/microsoft/moge
def create_uv_grid(
width: int, height: int, aspect_ratio: float = None, dtype: torch.dtype = None, device: torch.device = None
) -> torch.Tensor:
"""
Create a normalized UV grid of shape (width, height, 2).
The grid spans horizontally and vertically according to an aspect ratio,
ensuring the top-left corner is at (-x_span, -y_span) and the bottom-right
corner is at (x_span, y_span), normalized by the diagonal of the plane.
Args:
width (int): Number of points horizontally.
height (int): Number of points vertically.
aspect_ratio (float, optional): Width-to-height ratio. Defaults to width/height.
dtype (torch.dtype, optional): Data type of the resulting tensor.
device (torch.device, optional): Device on which the tensor is created.
Returns:
torch.Tensor: A (width, height, 2) tensor of UV coordinates.
"""
# Derive aspect ratio if not explicitly provided
if aspect_ratio is None:
aspect_ratio = float(width) / float(height)
# Compute normalized spans for X and Y
diag_factor = (aspect_ratio**2 + 1.0) ** 0.5
span_x = aspect_ratio / diag_factor
span_y = 1.0 / diag_factor
# Establish the linspace boundaries
left_x = -span_x * (width - 1) / width
right_x = span_x * (width - 1) / width
top_y = -span_y * (height - 1) / height
bottom_y = span_y * (height - 1) / height
# Generate 1D coordinates
x_coords = torch.linspace(left_x, right_x, steps=width, dtype=dtype, device=device)
y_coords = torch.linspace(top_y, bottom_y, steps=height, dtype=dtype, device=device)
# Create 2D meshgrid (width x height) and stack into UV
uu, vv = torch.meshgrid(x_coords, y_coords, indexing="xy")
uv_grid = torch.stack((uu, vv), dim=-1)
return uv_grid