lino / app.py
houyuanchen111
app
ca9bcd2
# MIT License
# Copyright (c) Microsoft
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# Copyright (c) [2025] [Microsoft]
# Copyright (c) [2025] [Chongjie Ye]
# SPDX-License-Identifier: MIT
# This file has been modified by Chongjie Ye on 2025/04/10
# Original file was released under MIT, with the full license text # available at https://github.com/atong01/conditional-flow-matching/blob/1.0.7/LICENSE.
# This modified file is released under the same license.
import gradio as gr
import os
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
from Stable3DGen.hi3dgen.pipelines import Hi3DGenPipeline
import trimesh
import tempfile
from PIL import Image
import glob
from src.data import DemoData
from src.models import LiNo_UniPS
from torch.utils.data import DataLoader
import pytorch_lightning as pl
import spaces
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
WEIGHTS_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'weights')
os.makedirs(TMP_DIR, exist_ok=True)
os.makedirs(WEIGHTS_DIR, exist_ok=True)
def cache_weights(weights_dir: str) -> dict:
import os
from huggingface_hub import snapshot_download
os.makedirs(weights_dir, exist_ok=True)
model_ids = [
"Stable-X/trellis-normal-v0-1",
"houyuanchen/lino"
]
cached_paths = {}
for model_id in model_ids:
print(f"Caching weights for: {model_id}")
# Check if the model is already cached
local_path = os.path.join(weights_dir, model_id.split("/")[-1])
if os.path.exists(local_path):
print(f"Already cached at: {local_path}")
cached_paths[model_id] = local_path
continue
# Download the model and cache it
print(f"Downloading and caching model: {model_id}")
# Use snapshot_download to download the model
local_path = snapshot_download(repo_id=model_id, local_dir=os.path.join(weights_dir, model_id.split("/")[-1]), force_download=False)
cached_paths[model_id] = local_path
print(f"Cached at: {local_path}")
return cached_paths
def preprocess_mesh(mesh_prompt):
print("Processing mesh")
trimesh_mesh = trimesh.load_mesh(mesh_prompt)
trimesh_mesh.export(mesh_prompt+'.glb')
return mesh_prompt+'.glb'
@spaces.GPU
def generate_3d(image, seed=-1,
ss_guidance_strength=3, ss_sampling_steps=50,
slat_guidance_strength=3, slat_sampling_steps=6,normal_bridge=None):
if image is None:
return None, None, None
if seed == -1:
seed = np.random.randint(0, MAX_SEED)
# image = hi3dgen_pipeline.preprocess_image(image, resolution=1024)
# normal_image = normal_predictor(image, resolution=768, match_input_resolution=True, data_type='object')
if normal_bridge is None:
return 0
mask = np.float32(np.abs(1 - np.sqrt(np.sum(normal_bridge * normal_bridge, axis=2))) < 0.5)[:,:,None]
normal_image = mask * (normal_bridge * 0.5 + 0.5)
normal_image = np.concatenate((normal_image,mask),axis=2)*255.0
normal_image = Image.fromarray(normal_image.astype(np.uint8),mode="RGBA")
outputs = hi3dgen_pipeline.run(
normal_image,
seed=seed,
formats=["mesh",],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
generated_mesh = outputs['mesh'][0]
# Save outputs
import datetime
output_id = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
os.makedirs(os.path.join(TMP_DIR, output_id), exist_ok=True)
mesh_path = f"{TMP_DIR}/{output_id}/mesh.glb"
# Export mesh
trimesh_mesh = generated_mesh.to_trimesh(transform_pose=True)
trimesh_mesh.export(mesh_path)
return mesh_path, mesh_path
@spaces.GPU
def predict_normal(input_images,input_mask):
test_dataset = DemoData(input_imgs_list=input_images,input_mask=input_mask)
test_loader = DataLoader(test_dataset, batch_size=1)
trainer = pl.Trainer(accelerator="auto", devices=1,precision="bf16-mixed")
nml_predict = trainer.predict(model=lino, dataloaders=test_loader)
nml_output = 0.5 * nml_predict[0] + 0.5
return ((nml_output*255.0).astype(np.uint8), nml_predict[0])
def convert_mesh(mesh_path, export_format):
"""Download the mesh in the selected format."""
if not mesh_path:
return None
# Create a temporary file to store the mesh data
temp_file = tempfile.NamedTemporaryFile(suffix=f".{export_format}", delete=False)
temp_file_path = temp_file.name
new_mesh_path = mesh_path.replace(".glb", f".{export_format}")
mesh = trimesh.load_mesh(mesh_path)
mesh.export(temp_file_path) # Export to the temporary file
return temp_file_path # Return the path to the temporary file
def load_example_data(path,numberofimages):
path = os.path.join("demo", path)
mask_path = os.path.join(path,"mask.png")
image_pathes = glob.glob(os.path.join(path, f"L*")) + glob.glob(os.path.join(path, f"0*"))
image_pathes = image_pathes[:numberofimages]
input_images = []
for p in image_pathes:
input_images.append(Image.open(p))
if os.path.exists(mask_path):
input_mask = Image.open(mask_path)
else:
input_mask =Image.fromarray(np.ones_like(np.array(input_images[0])))
normal_path = os.path.join(path,"normal.png")
if os.path.exists(normal_path):
normal_gt = Image.open(normal_path)
else:
normal_gt = Image.fromarray(np.ones_like(np.array(input_images[0])))
return input_mask,input_images,normal_gt
# Create the Gradio interface with improved layout
with gr.Blocks(css="footer {visibility: hidden}") as demo:
gr.Markdown(
"""
<h1 style='text-align: center;'>Light of Normals: Unified Feature Representation for Universal Photometric Stereo</h1>
"""
)
with gr.Row():
gr.Markdown("""
<p align="center">
<a title="Website" href="https://houyuanchen111.github.io/lino.github.io/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-website.svg">
</a>
<a title="arXiv" href="http://arxiv.org/pdf/2506.18882" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
</a>
<a title="Github" href="https://github.com/houyuanchen111/LINO_UniPS" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/badge/Github-Page-black" alt="badge-github-stars">
</a>
</p>
""")
with gr.Row():
gr.Markdown(
"""
LINO-UniPS is a method for Univeral Photometric Stereo. It predicts the normal map from a given set of images. Key features include:
* **Light-Agnostic:** Does not require specific lighting parameters as input.
* **Arbitrary-Resolution:** Supports inputs of any resolution.
* **Mask-Free:** Also supports mask-free scene normal reconstruction.
"""
)
with gr.Row():
gr.Markdown(
"""
### Getting Started:
1. **Upload Your Data**: Use the "Upload Multi-light Images" button on the left to provide your input. For best results, we recommend providing 6 or more images.
2. **Upload Your Mask (Optional)**: A mask is not required for scene reconstruction. However, to reconstruct the normal map for a specific **object**, providing a mask is highly recommended. Use the "Mask" button on the left.
3. **Reconstruct**: Click the "Run" button to start the reconstruction process. You can use the slider in "Advanced Settings" to control the number of multi-light images used by LINO-UniPS. Note: If the selected number exceeds the total number of uploaded images, the maximum available number will be used instead.
4. **Visualize**: The result will appear in the "Normal Output" viewer on the right. If you use one of our provided examples that includes a ground truth normal map, it will be displayed in the "Ground Truth" viewer for comparison.
5. **Generate Mesh (Optional)**: After the normal map is reconstructed, you can click the "Generate Mesh" button. This will use the predicted normal as a "normal bridge" to generate the corresponding 3D mesh via Hi3DGen. We recommend this step primarily for **objects**, as Hi3DGen is currently an object-level model.
"""
)
with gr.Row():
with gr.Column(scale=1):
with gr.Tabs():
with gr.Tab("Input Images"):
with gr.Row():
input_mask = gr.Image(
label="Mask (Optional)",
type="pil",
height="300px",
)
input_images = gr.Gallery(
label="Upload Multi-light Images",
type="numpy",
columns=8,
object_fit="contain",
preview=True,
)
model_output = gr.Model3D(
label="3D Model Preview (Generated by Hi3DGen)",
)
with gr.Row():
export_format = gr.Dropdown(
choices=["obj", "glb", "ply", "stl"],
value="glb",
label="File Format",
scale=2
)
download_btn = gr.DownloadButton(
label="Export Mesh",
interactive=False,
scale=1
)
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab("LINO-UniPS Output"):
with gr.Row(scale=3):
normal_output = gr.Image(label="Normal Output",height=700,)
normal_gt = gr.Image(label="Ground Truth",height=700)
with gr.Accordion("Advanced Settings", open=True):
numberofimages = gr.Slider(0, 100, label="Number of Images", value=16, step=1)
run_btn = gr.Button("Run", size="lg", variant="primary")
gen_shape_btn = gr.Button("Generate Mesh", size="lg", variant="primary")
seed = gr.Number(np.random.randint(0,1e10),visible=False)
ss_guidance_strength =gr.Number(3,visible=False)
ss_sampling_steps = gr.Number(50,visible=False)
slat_guidance_strength =gr.Number(3.0,visible=False)
slat_sampling_steps = gr.Number(6,visible=False)
normal_bridge = gr.State()
gen_shape_btn.click(
generate_3d,
inputs=[
input_images, seed,
ss_guidance_strength, ss_sampling_steps,
slat_guidance_strength, slat_sampling_steps,
normal_bridge
],
outputs=[model_output, download_btn]
).then(
lambda: gr.Button(interactive=True),
outputs=[download_btn],
)
run_btn.click(
predict_normal,
inputs=[
input_images,
input_mask
],
outputs=[normal_output,normal_bridge],
)
def update_download_button(mesh_path, export_format):
if not mesh_path:
return gr.File.update(value=None, interactive=False)
download_path = convert_mesh(mesh_path, export_format)
return download_path
export_format.change(
update_download_button,
inputs=[model_output, export_format],
outputs=[download_btn]
).then(
lambda: gr.Button(interactive=True),
outputs=[download_btn],
)
example_display = gr.Image(visible=False,type="pil",label="Input images")
obj_path = gr.Textbox(label = "Name",visible=False)
num = gr.Textbox(label = "Maximum number of images",visible=False)
is_mask = gr.Textbox(label = "Mask",visible=False)
is_gt = gr.Textbox(label = "Normal ground truth",visible=False)
image_type = gr.Textbox(label = "Image type",visible=False)
image_resolution = gr.Textbox(label = "Image resolution",visible=False)
display_data = [
[Image.open("demo/basket/demo.png"), "basket", 8, False, False, "Real","960*960"],
[Image.open("demo/key/demo.png"), "key", 8, True, False, "Real","640*640"],
[Image.open("demo/canandwood/demo.png"), "canandwood", 18, True, False, "Real","4032*2268"],
[Image.open("demo/cat/demo.png"), "cat", 96, True, True, "Real","512*612"],
[Image.open("demo/coins_and_keyboard/demo.png"), "coins_and_keyboard", 12, False, False, "Real","4000*4000"],
[Image.open("demo/owl/demo.png"), "owl", 13, True, False, "Real","2400*1600"],
[Image.open("demo/rabit/demo.png"), "rabit", 9, True, False, "Real","4000*4000"],
[Image.open("demo/reading/demo.png"), "reading", 96, True, True, "Real","512*612"],
]
gr.Markdown(
"""
<p style='color: #2b93d6; font-size: 1em; text-align: left;'>
Click any row to load an example.
</p>
"""
)
gr.Examples(
examples=display_data,
inputs=[example_display,obj_path,num,is_mask,is_gt,image_type,image_resolution],
label="Examples"
)
example_display.change(
fn=load_example_data,
inputs=[obj_path,numberofimages],
outputs=[
input_mask,
input_images,
normal_gt
]
)
if __name__ == "__main__":
# Download and cache the weights
cache_weights(WEIGHTS_DIR)
hi3dgen_pipeline = Hi3DGenPipeline.from_pretrained("weights/trellis-normal-v0-1")
hi3dgen_pipeline.cuda()
lino = LiNo_UniPS()
lino.from_pretrained("weights/lino/lino.pth")
demo.launch(share=False, server_name="0.0.0.0")