File size: 10,395 Bytes
c295391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
from math import exp

class MultiScaleDerivativeLoss(nn.Module):
    def __init__(self, operator='scharr', p=1, reduction='mean', normalize_input=False, num_scales=4):
        """
        operator: 'scharr' (一阶) or 'laplace' (二阶)
        p: 1 for L1, 2 for L2
        reduction: 'mean' or 'sum'
        normalize_input: whether to normalize input vectors (for normals)
        num_scales: number of scales in the pyramid (e.g., 4 = 原图, 1/2, 1/4, 1/8)
        """
        super().__init__()
        assert operator in ['scharr', 'laplace']
        assert p in [1, 2]
        assert reduction in ['mean', 'sum']
        assert num_scales >= 1

        self.operator = operator
        self.p = p
        self.reduction = reduction
        self.normalize_input = normalize_input
        self.num_scales = num_scales

    def forward(self, pred, gt):
        """
        pred, gt: [B, C, H, W] tensors
        """
        pred_pyramid = self._build_pyramid(pred)
        gt_pyramid = self._build_pyramid(gt)

        total_loss = 0.0

        for pred_i, gt_i in zip(pred_pyramid, gt_pyramid):
            if self.normalize_input:
                pred_i = F.normalize(pred_i, dim=1)
                gt_i = F.normalize(gt_i, dim=1)

            grad_pred = self._compute_gradient(pred_i)
            grad_gt = self._compute_gradient(gt_i)

            diff = grad_pred - grad_gt
            if self.p == 1:
                diff = torch.abs(diff)
            else:
                diff = diff ** 2

            if self.reduction == 'mean':
                total_loss += diff.mean()
            else:
                total_loss += diff.sum()

        return total_loss / self.num_scales

    def _build_pyramid(self, img):
        """Construct a multi-scale pyramid from input image"""
        pyramid = [img]
        for i in range(1, self.num_scales):
            scale = 0.5 ** i
            img = F.interpolate(img, scale_factor=scale, mode='bicubic', align_corners=False, recompute_scale_factor=True,antialias=True)
            pyramid.append(img)
        return pyramid

    def _compute_gradient(self, img):
        B, C, H, W = img.shape
        device = img.device

        if self.operator == 'scharr':
            kernel_x = torch.tensor([[[-3., 0., 3.],
                                      [-10., 0., 10.],
                                      [-3., 0., 3.]]], device=device) / 16.0
            kernel_y = torch.tensor([[[-3., -10., -3.],
                                      [0., 0., 0.],
                                      [3., 10., 3.]]], device=device) / 16.0
            kernel_x = kernel_x.unsqueeze(0).expand(C, 1, 3, 3)
            kernel_y = kernel_y.unsqueeze(0).expand(C, 1, 3, 3)

            grad_x = F.conv2d(img, kernel_x, padding=1, groups=C)
            grad_y = F.conv2d(img, kernel_y, padding=1, groups=C)
            return torch.cat([grad_x, grad_y], dim=1)  # [B, 2C, H, W]

        elif self.operator == 'laplace':
            kernel = torch.tensor([[[0., 1., 0.],
                                    [1., -4., 1.],
                                    [0., 1., 0.]]], device=device)
            kernel = kernel.unsqueeze(0).expand(C, 1, 3, 3)
            return F.conv2d(img, kernel, padding=1, groups=C)  # [B, C, H, W]

class CosineLoss(torch.nn.Module):
    def __init__(self):
        super(CosineLoss, self).__init__()

    def forward(self, N, N_hat):
        """
        N: 真实法向量, 形状 (B, C, H, W) 
        N_hat: 预测法向量, 形状应与 N 相同
        """
        # 创建非零 mask(按像素维度求L2范数)
        _,_,H,W = N.shape
        mask = (N.norm(p=2, dim=1, keepdim=True) > 0)  # shape: (B, 1, H, W),True表示N非零
        mse = F.mse_loss(N, N_hat, reduction='mean') * H * W /2048 
        dot_product = torch.sum(N * N_hat, dim=1, keepdim=True)  # shape: (B, 1, H, W)
    
        # 仅在非零区域计算 loss
        loss = 1 - dot_product
        loss = loss[mask]  # 只取非零像素位置
        return loss.mean(), mse
    





def gaussian(window_size, sigma):
    gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
    return gauss/gauss.sum()

def create_window(window_size, channel):
    _1D_window = gaussian(window_size, 1.5).unsqueeze(1)
    _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
    window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
    return window

def _ssim(img1, img2, window, window_size, channel, size_average = True, stride=None):
    mu1 = F.conv2d(img1, window, padding = (window_size-1)//2, groups = channel, stride=stride)
    mu2 = F.conv2d(img2, window, padding = (window_size-1)//2, groups = channel, stride=stride)

    mu1_sq = mu1.pow(2)
    mu2_sq = mu2.pow(2)
    mu1_mu2 = mu1*mu2

    sigma1_sq = F.conv2d(img1*img1, window, padding = (window_size-1)//2, groups = channel, stride=stride) - mu1_sq
    sigma2_sq = F.conv2d(img2*img2, window, padding = (window_size-1)//2, groups = channel, stride=stride) - mu2_sq
    sigma12 = F.conv2d(img1*img2, window, padding = (window_size-1)//2, groups = channel, stride=stride) - mu1_mu2

    C1 = 0.01**2
    C2 = 0.03**2

    ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2))

    if size_average:
        return ssim_map.mean()
    else:
        return ssim_map.mean(1).mean(1).mean(1)

class SSIM(torch.nn.Module):
    def __init__(self, window_size = 3, size_average = True, stride=3):
        super(SSIM, self).__init__()
        self.window_size = window_size
        self.size_average = size_average
        self.channel = 1
        self.stride = stride
        self.window = create_window(window_size, self.channel)

    def forward(self, img1, img2):
        """
        img1, img2: torch.Tensor([b,c,h,w])
        """
        (_, channel, _, _) = img1.size()

        if channel == self.channel and self.window.data.type() == img1.data.type():
            window = self.window
        else:
            window = create_window(self.window_size, channel)

            if img1.is_cuda:
                window = window.cuda(img1.get_device())
            window = window.type_as(img1)

            self.window = window
            self.channel = channel


        return _ssim(img1, img2, window, self.window_size, channel, self.size_average, stride=self.stride)


def ssim(img1, img2, window_size = 11, size_average = True):
    (_, channel, _, _) = img1.size()
    window = create_window(window_size, channel)

    if img1.is_cuda:
        window = window.cuda(img1.get_device())
    window = window.type_as(img1)

    return _ssim(img1, img2, window, window_size, channel, size_average)




class S3IM(torch.nn.Module):
    def __init__(self, kernel_size=4, stride=4, repeat_time=10, patch_height=64, patch_width=32):
        super(S3IM, self).__init__()
        self.kernel_size = kernel_size
        self.stride = stride
        self.repeat_time = repeat_time
        self.patch_height = patch_height
        self.patch_width = patch_width
        self.ssim_loss = SSIM(window_size=self.kernel_size, stride=self.stride)

    def forward(self, src_vec, tar_vec):
        """
        Args:
            src_vec: [B, N, C] e.g., [batch, pixels, channels]
            tar_vec: [B, N, C]
        Returns:
            loss: scalar tensor
        """
        B, N, C = src_vec.shape
        device = src_vec.device
        patch_list_src, patch_list_tar = [], []

        for b in range(B):
            index_list = []
            for i in range(self.repeat_time):
                if i == 0:
                    tmp_index = torch.arange(N, device=device)
                else:
                    tmp_index = torch.randperm(N, device=device)
                index_list.append(tmp_index)

            res_index = torch.cat(index_list)  # [M * N]
            tar_all = tar_vec[b][res_index]    # [M*N, C]
            src_all = src_vec[b][res_index]    # [M*N, C]

            # reshape into [1, C, H, W]
            tar_patch = tar_all.permute(1, 0).reshape(1, C, self.patch_height, self.patch_width * self.repeat_time)
            src_patch = src_all.permute(1, 0).reshape(1, C, self.patch_height, self.patch_width * self.repeat_time)

            patch_list_tar.append(tar_patch)
            patch_list_src.append(src_patch)

        # Stack all batches: [B, C, H, W]
        tar_tensor = torch.cat(patch_list_tar, dim=0)
        src_tensor = torch.cat(patch_list_src, dim=0)

        # 计算 batch-wise SSIM,输出为 [B]
        ssim_scores = self.ssim_loss(src_tensor, tar_tensor)

        # 损失为 1 - mean SSIM
        loss = 1.0 - ssim_scores
        return loss



torch.manual_seed(0)

# 假设每张图片提取出 64 x 64 个像素,每个像素 3 通道
# H, W, C = 64, 32, 3
# N = H * W
# B = 4
# # 随机生成两个图像特征向量:[N, C]
# src_vec = torch.rand(B, N, C)  # 模拟重建图像
# tar_vec = torch.rand(B, N, C)  # 模拟 ground truth 图像

# # 初始化 S3IM 模块
# s3im_loss_fn = S3IM(kernel_size=4, stride=4, repeat_time=10, patch_height=64, patch_width=32)

# # 计算损失
# loss = s3im_loss_fn(src_vec, tar_vec)

def weighted_huber_loss(
    input: torch.Tensor,
    target: torch.Tensor,
    weight: torch.Tensor,          # 新增的置信度权重张量
    reduction: str = 'mean',
    delta: float = 1.0,
) -> torch.Tensor:    
    # 广播对齐所有张量
    expanded_input, expanded_target = torch.broadcast_tensors(input, target)
    expanded_weight, _ = torch.broadcast_tensors(weight, input)  # 确保权重可广播
    
    # 计算逐元素误差
    diff = expanded_input - expanded_target
    abs_diff = torch.abs(diff)
    
    # Huber损失分段计算
    loss = torch.where(
        abs_diff <= delta,
        0.5 * (diff ** 2),
        delta * (abs_diff - 0.5 * delta)
    )
    
    # 应用权重
    weighted_loss = expanded_weight * loss
    
    # 汇总方式
    if reduction == 'mean':
        return torch.mean(weighted_loss)
    elif reduction == 'sum':
        return torch.sum(weighted_loss)
    elif reduction == 'none':
        return weighted_loss
    else:
        raise ValueError(f"Unsupported reduction: {reduction}")