File size: 21,693 Bytes
c295391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
from typing import  Tuple
import torch
import torch
import torch.nn as nn
import torch.nn.functional as F
from ..utils.model_utils import *
from ..utils import transformer
from ..utils.ind2sub import *
from ..utils.decompose_tensors import *
from ..utils.utils import *
from einops import rearrange
from ..aggregator import Aggregator
import pywt

def create_wavelet_filter(wave, in_size, out_size, type=torch.float):
    w = pywt.Wavelet(wave)
    dec_hi = torch.tensor(w.dec_hi[::-1], dtype=type)
    dec_lo = torch.tensor(w.dec_lo[::-1], dtype=type)
    dec_filters = torch.stack([dec_lo.unsqueeze(0) * dec_lo.unsqueeze(1),
                               dec_lo.unsqueeze(0) * dec_hi.unsqueeze(1),
                               dec_hi.unsqueeze(0) * dec_lo.unsqueeze(1),
                               dec_hi.unsqueeze(0) * dec_hi.unsqueeze(1)], dim=0)

    dec_filters = dec_filters[:, None].repeat(in_size, 1, 1, 1)

    rec_hi = torch.tensor(w.rec_hi[::-1], dtype=type).flip(dims=[0])
    rec_lo = torch.tensor(w.rec_lo[::-1], dtype=type).flip(dims=[0])
    rec_filters = torch.stack([rec_lo.unsqueeze(0) * rec_lo.unsqueeze(1),
                               rec_lo.unsqueeze(0) * rec_hi.unsqueeze(1),
                               rec_hi.unsqueeze(0) * rec_lo.unsqueeze(1),
                               rec_hi.unsqueeze(0) * rec_hi.unsqueeze(1)], dim=0)

    rec_filters = rec_filters[:, None].repeat(out_size, 1, 1, 1)

    return dec_filters, rec_filters

def wavelet_transform(x, filters):
    b, c, h, w = x.shape
    pad = (filters.shape[2] // 2 - 1, filters.shape[3] // 2 - 1)
    x = F.conv2d(x, filters, stride=2, groups=c, padding=pad)
    x = x.reshape(b, c, 4, h // 2, w // 2)
    return x


def inverse_wavelet_transform(x, filters):
    b, c, _, h_half, w_half = x.shape
    pad = (filters.shape[2] // 2 - 1, filters.shape[3] // 2 - 1)
    x = x.reshape(b, c * 4, h_half, w_half)
    x = F.conv_transpose2d(x, filters, stride=2, groups=c, padding=pad)
    return x

class ResidualConvUnit(nn.Module):
    """Residual convolution module."""

    def __init__(self, features, activation, bn, groups=1):
        """Init.

        Args:
            features (int): number of features
        """
        super().__init__()

        self.bn = bn
        self.groups = groups
        self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
        self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)

        self.norm1 = None
        self.norm2 = None

        self.activation = activation
        self.skip_add = nn.quantized.FloatFunctional()

    def forward(self, x):
        """Forward pass.

        Args:
            x (tensor): input

        Returns:
            tensor: output
        """

        out = self.activation(x)
        out = self.conv1(out)
        if self.norm1 is not None:
            out = self.norm1(out)

        out = self.activation(out)
        out = self.conv2(out)
        if self.norm2 is not None:
            out = self.norm2(out)

        return self.skip_add.add(out, x)


class FeatureFusionBlock(nn.Module):
    """Feature fusion block."""

    def __init__(
        self,
        features,
        activation,
        deconv=False,
        bn=False,
        expand=False,
        align_corners=True,
        size=None,
        has_residual=True,
        groups=1,
    ):
        """Init.

        Args:
            features (int): number of features
        """
        super(FeatureFusionBlock, self).__init__()

        self.deconv = deconv
        self.align_corners = align_corners
        self.groups = groups
        self.expand = expand
        out_features = features
        if self.expand == True:
            out_features = features // 2

        self.out_conv = nn.Conv2d(
            features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=self.groups
        )

        if has_residual:
            self.resConfUnit1 = ResidualConvUnit(features, activation, bn, groups=self.groups)

        self.has_residual = has_residual
        self.resConfUnit2 = ResidualConvUnit(features, activation, bn, groups=self.groups)

        self.skip_add = nn.quantized.FloatFunctional()
        self.size = size

    def forward(self, *xs, size=None):
        """Forward pass.

        Returns:
            tensor: output
        """
        output = xs[0]

        if self.has_residual:
            res = self.resConfUnit1(xs[1])
            output = self.skip_add.add(output, res)

        output = self.resConfUnit2(output)

        if (size is None) and (self.size is None):
            modifier = {"scale_factor": 2}
        elif size is None:
            modifier = {"size": self.size}
        else:
            modifier = {"size": size}

        output = custom_interpolate(output.float(), **modifier, mode="bilinear", align_corners=self.align_corners).to(torch.bfloat16)
        output = self.out_conv(output)

        return output


def custom_interpolate(
    x: torch.Tensor,
    size: Tuple[int, int] = None,
    scale_factor: float = None,
    mode: str = "bilinear",
    align_corners: bool = True,
) -> torch.Tensor:
    """
    Custom interpolate to avoid INT_MAX issues in nn.functional.interpolate.
    """
    if size is None:
        size = (int(x.shape[-2] * scale_factor), int(x.shape[-1] * scale_factor))

    INT_MAX = 1610612736

    input_elements = size[0] * size[1] * x.shape[0] * x.shape[1]

    if input_elements > INT_MAX:
        chunks = torch.chunk(x, chunks=(input_elements // INT_MAX) + 1, dim=0)
        interpolated_chunks = [
            nn.functional.interpolate(chunk, size=size, mode=mode, align_corners=align_corners) for chunk in chunks
        ]
        x = torch.cat(interpolated_chunks, dim=0)
        return x.contiguous()
    else:
        return nn.functional.interpolate(x, size=size, mode=mode, align_corners=align_corners)

def _make_scratch(in_shape, out_shape: int, groups: int = 1, expand: bool = False) -> nn.Module:
    """
    
    """
    scratch = nn.Module() 

    
    activation_function = nn.LeakyReLU  

    
    out_shape1 = out_shape
    out_shape2 = out_shape
    out_shape3 = out_shape
    if len(in_shape) >= 4:
        out_shape4 = out_shape 

    if expand:
        out_shape1 = out_shape
        out_shape2 = out_shape * 2
        out_shape3 = out_shape * 4
        if len(in_shape) >= 4:
            out_shape4 = out_shape * 8

    
    scratch.layer1_rn = nn.Sequential(
        nn.Conv2d(
            in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
        ),
        activation_function() 
    )
    scratch.layer2_rn = nn.Sequential(
        nn.Conv2d(
            in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
        ),
        activation_function() 
    )
    scratch.layer3_rn = nn.Sequential(
        nn.Conv2d(
            in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
        ),
        activation_function() 
    )
    if len(in_shape) >= 4:
        
        scratch.layer4_rn = nn.Sequential(
            nn.Conv2d(
                in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
            ),
            activation_function() 
        )

    return scratch 


def _make_fusion_block(features: int, size: int = None, has_residual: bool = True, groups: int = 1) -> nn.Module:
    return FeatureFusionBlock(
        features,
        nn.LeakyReLU(inplace=False),
        deconv=False,
        bn=False,
        expand=False,
        align_corners=True,
        size=size,
        has_residual=has_residual,
        groups=groups,
    )


class ImageFeatureExtractor(nn.Module):
    def __init__(self, depth=4,img_size=256, patch_size=8, embed_dim=384):
        super(ImageFeatureExtractor, self).__init__()
        self.aggregator = Aggregator(img_size, patch_size, embed_dim,depth=depth,patch_embed="dinov2_vits14_reg") 
       

    def forward(self, x, nImgArray):
    
        
        feat_list, normal_patch_start_idx = self.aggregator(x) 

        return torch.stack(feat_list,dim=0).permute(1,2,0,3,4).flatten(0,1),normal_patch_start_idx 


class ImageFeatureFusion(nn.Module):
    def __init__(self, 
                 in_channels, 
                 use_efficient_attention=False,
                 out_channels = [256, 512, 1024, 1024],
                 features = 256,
    ):
        super(ImageFeatureFusion, self).__init__()
        _, self.iwt_filter = create_wavelet_filter('db1', 384, 384, torch.bfloat16)
        self.pixel_shuffle = nn.PixelShuffle(2) 
        self.norm = nn.LayerNorm(in_channels)
        self.projects = nn.ModuleList(
                [
                    nn.Sequential(
                        
                        nn.Conv2d(
                            in_channels=in_channels // 4, 
                            out_channels=oc,              
                            kernel_size=1,
                            stride=1,
                            padding=0,
                            bias=True 
                        ),
                        nn.LeakyReLU()
        
                    )
                    for oc in out_channels 
                ]
            )
        
        self.resize_layers = nn.ModuleList(
    [
        nn.Sequential(
            nn.ConvTranspose2d(
                in_channels=out_channels[0], out_channels=out_channels[0], kernel_size=2, stride=2, padding=0
            ),
            nn.LeakyReLU(), 
            nn.ConvTranspose2d(
                in_channels=out_channels[0], out_channels=out_channels[0], kernel_size=2, stride=2, padding=0
            ),
            nn.LeakyReLU() 
        ),
        nn.Sequential( 
             nn.ConvTranspose2d(
                 in_channels=out_channels[1], out_channels=out_channels[1], kernel_size=2, stride=2, padding=0
             ),
             nn.LeakyReLU() 
        ),
        nn.Sequential( 
             nn.Conv2d(
                 in_channels=out_channels[2], out_channels=out_channels[2], kernel_size=1, stride=1, padding=0
             ),
             nn.LeakyReLU() 
        ),
        nn.Sequential(
             nn.Conv2d(
                 in_channels=out_channels[3], out_channels=out_channels[3], kernel_size=2, stride=2, padding=0 
             ),
             nn.LeakyReLU() 
         )
        
        
        
        
        
        
    ]
)


        self.scratch = _make_scratch(
            out_channels,
            features,
            expand=False,
        )

        
        self.scratch.stem_transpose = None
        self.scratch.refinenet1 = _make_fusion_block(features)
        self.scratch.refinenet2 = _make_fusion_block(features)
        self.scratch.refinenet3 = _make_fusion_block(features)
        self.scratch.refinenet4 = _make_fusion_block(features, has_residual=False)

        head_features_1 = features

        self.scratch.output_conv1 = nn.Conv2d(
                head_features_1, head_features_1 , kernel_size=3, stride=2, padding=1
            )
      

        
    def _apply_pos_embed(self, x: torch.Tensor, W: int, H: int, ratio: float = 0.1) -> torch.Tensor:
        """
        Apply positional embedding to tensor x.
        """
        patch_w = x.shape[-1]
        patch_h = x.shape[-2]
        pos_embed = create_uv_grid(patch_w, patch_h, aspect_ratio=W / H, dtype=x.dtype, device=x.device)
        pos_embed = position_grid_to_embed(pos_embed, x.shape[1])
        pos_embed = pos_embed * ratio
        pos_embed = pos_embed.permute(2, 0, 1)[None].expand(x.shape[0], -1, -1, -1)
        return x + pos_embed
    
    def scratch_forward(self, features) -> torch.Tensor:
        """
        Forward pass through the fusion blocks.

        Args:
            features (List[Tensor]): List of feature maps from different layers.

        Returns:
            Tensor: Fused feature map.
        """
        layer_1, layer_2, layer_3, layer_4 = features

        layer_1_rn = self.scratch.layer1_rn(layer_1)
        layer_2_rn = self.scratch.layer2_rn(layer_2)
        layer_3_rn = self.scratch.layer3_rn(layer_3)
        layer_4_rn = self.scratch.layer4_rn(layer_4)

        out = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])
        del layer_4_rn, layer_4

        out = self.scratch.refinenet3(out, layer_3_rn, size=layer_2_rn.shape[2:])
        del layer_3_rn, layer_3

        out = self.scratch.refinenet2(out, layer_2_rn, size=layer_1_rn.shape[2:])
        del layer_2_rn, layer_2

        out = self.scratch.refinenet1(out, layer_1_rn)
        del layer_1_rn, layer_1

        out = self.scratch.output_conv1(out)
        return out
    def forward(self, 
                glc: torch.Tensor, 
                nImgArray: torch.Tensor, 
                chunk_size: int = 6
               ) -> torch.Tensor:

        B = glc.shape[0]

        # 如果不需要分块(总批次大小小于或等于块大小),则直接调用核心实现
        if chunk_size is None or chunk_size >= B:
            return self._forward_impl(glc, nImgArray)

        # 否则,进行分块处理
        all_outputs = []
        # 以 chunk_size 为步长进行循环
        for start_idx in range(0, B, chunk_size):
            # 计算当前块的结束索引
            end_idx = min(start_idx + chunk_size, B)
            
            # 从大的输入张量中切出当前要处理的小块
            glc_chunk = glc[start_idx:end_idx]
            
            # 注意:如果 nImgArray 也与批次相关,也需要进行切片
            # nImgArray_chunk = nImgArray[start_idx:end_idx]
            
            # 调用核心实现函数来处理这个小块
            chunk_output = self._forward_impl(glc_chunk, nImgArray)
            
            all_outputs.append(chunk_output)
            
        # 将所有小块的处理结果,沿着批次维度(dim=0)重新拼接起来
        final_output = torch.cat(all_outputs, dim=0)
        
        return final_output

    def _forward_impl(self, glc: torch.Tensor, nImgArray: torch.Tensor) -> torch.Tensor:
        """
        这是核心实现方法,处理一个数据块(chunk)。
        这里的代码就是您提供的原始 forward 方法的主体。
        """
        self.iwt_filter = self.iwt_filter.to(glc.device)
        B, layer_num, N, C = glc.shape # 这里的 B 现在是 chunk_size
        out = []
        
        for layer in range(layer_num):
            x = glc[:, layer, :, :] # [B, N, C]
            x = self.norm(x) 
            x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], int(N**0.5), int(N**0.5))) # [B,C,sqrt(N),sqrt(N)]
            
            x = self.pixel_shuffle(x) # [B, C, H, W] -> [B, C/4, H*2, W*2]
            
            x = self.projects[layer](x)
            x = self._apply_pos_embed(x, 256, 256).to(torch.bfloat16)
            x = self.resize_layers[layer](x)
            
            out.append(x)
        
        out = self.scratch_forward(out)
        out = self._apply_pos_embed(out, 256, 256).to(torch.bfloat16) # [B, 256, 64, 64]
        
        return out
    
    




    
class ScaleInvariantSpatialLightImageEncoder(nn.Module): 
    def __init__(self, input_nc, depth=4, use_efficient_attention=False):
        super(ScaleInvariantSpatialLightImageEncoder, self).__init__()
        out_channels = (96, 192, 384, 768)
        self.backbone = ImageFeatureExtractor(depth=depth)
        self.fusion = ImageFeatureFusion(in_channels=1536, use_efficient_attention=use_efficient_attention)
        self.feat_dim = 256
        self.wt_filter, _ = create_wavelet_filter('db1', 3, 3, torch.bfloat16)
        _, self.iwt_filter = create_wavelet_filter('db1', self.feat_dim, self.feat_dim, torch.bfloat16)


    def forward(self, x, nImgArray, canonical_resolution):
        N, C, H, W = x.shape        
        B = N//nImgArray[0]   
        mosaic_scale = H // canonical_resolution
        K = mosaic_scale * mosaic_scale
        self.wt_filter = self.wt_filter.to(x.device)
        self.iwt_filter = self.iwt_filter.to(x.device)

        """ (1a) resizing x to (Hc, Wc)"""
        x_resized = F.interpolate(x.float(), size= (canonical_resolution, canonical_resolution), mode='bilinear', align_corners=True).to(torch.bfloat16) 
        x_resized = x_resized.view(len(nImgArray), int(nImgArray[0]), C, x_resized.shape[2], x_resized.shape[3]) 
        
        
        """ (1b) decomposing x into K x K of (Hc, Wc) non-overlapped blocks (stride)"""           
        x_wt = wavelet_transform(x, self.wt_filter).permute(0, 2, 1, 3, 4) 
    
        x_wt = x_wt.reshape(B,nImgArray[0],K,3,canonical_resolution,canonical_resolution).flatten(1,2).flatten(0,1) 
        x_wt = x_wt.view(len(nImgArray), K * int(nImgArray[0]), C, x_wt.shape[2], x_wt.shape[3])

        """ (2a) feature extraction """
        aggregated_tokens_list, patch_start_idx = self.backbone(x_resized,nImgArray)
        light_tokens_resized = aggregated_tokens_list[:,:,:patch_start_idx - 4,:] 
        light_tokens_resized = rearrange(light_tokens_resized,'(B f) layer num c -> B f layer num c',B = B) 
        x = self.fusion(aggregated_tokens_list[:,:,patch_start_idx:,:], nImgArray)
        f_resized_grid = F.interpolate(x.reshape(N, self.feat_dim, canonical_resolution, canonical_resolution).float() , size= (H, W), mode='bilinear', align_corners=True).to(torch.bfloat16) 
        
        """ (2b) feature extraction (grid) """

        aggregated_tokens_list, patch_start_idx = self.backbone(x_wt,nImgArray)
        light_tokens_wt = aggregated_tokens_list[:,:,:patch_start_idx - 4,:] 
        light_tokens_wt = rearrange(light_tokens_wt,'(B f k) layer num c -> B f k layer num c',B = B, f=nImgArray[0]) 
        light_tokens = torch.cat((light_tokens_resized.unsqueeze(2), light_tokens_wt), dim=2) 


        x = self.fusion(aggregated_tokens_list[:,:,patch_start_idx:,:], nImgArray) 
        x = rearrange(x, '(f k) c h w -> f c k h w ',k=4) 
        x = inverse_wavelet_transform(x, self.iwt_filter) 
       
        """ (3) upsample """
        glc = (f_resized_grid + x)        
    


        return glc,light_tokens


 
class GLC_Upsample(nn.Module):
    def __init__(self, input_nc, num_enc_sab=1, dim_hidden=256, dim_feedforward=1024, use_efficient_attention=False):
        super(GLC_Upsample, self).__init__()       
        self.comm = transformer.CommunicationBlock(input_nc, num_enc_sab = num_enc_sab, dim_hidden=dim_hidden, ln=True, dim_feedforward = dim_feedforward,use_efficient_attention=False)
       
    def forward(self, x):
        x = self.comm(x)        
        return x

class GLC_Aggregation(nn.Module):
    def __init__(self, input_nc, num_agg_transformer=2, dim_aggout=384, dim_feedforward=1024, use_efficient_attention=False):
        super(GLC_Aggregation, self).__init__()              
        self.aggregation = transformer.AggregationBlock(dim_input = input_nc, num_enc_sab = num_agg_transformer, num_outputs = 1, dim_hidden=dim_aggout, dim_feedforward = dim_feedforward, num_heads=8, ln=True, attention_dropout=0.1, use_efficient_attention=use_efficient_attention)

    def forward(self, x):
        x = self.aggregation(x)      
        return x




class Regressor(nn.Module):
    def __init__(self, input_nc, num_enc_sab=1, use_efficient_attention=False, dim_feedforward=256, output='normal'):
        super(Regressor, self).__init__()     
        
        self.comm = transformer.CommunicationBlock(input_nc, num_enc_sab = num_enc_sab, dim_hidden=input_nc, ln=True, dim_feedforward = dim_feedforward, use_efficient_attention=use_efficient_attention)
        if output == 'normal':   
            self.prediction_normal = PredictionHead(input_nc, 3, confidence=True) 
        self.target = output
     
    def forward(self, x, num_sample_set):
        """Standard forward
        INPUT: img [Num_Pix, F]
        OUTPUT: [Num_Pix, 3]"""  
        if x.shape[0] % num_sample_set == 0:
            x_ = x.reshape(-1, num_sample_set, x.shape[1])
            x_ = self.comm(x_) 
            x = x_.reshape(-1, x.shape[1])
        else:
            ids = list(range(x.shape[0]))
            num_split = len(ids) // num_sample_set
            x_1 = x[:(num_split)*num_sample_set, :].reshape(-1, num_sample_set, x.shape[1])
            x_1 = self.comm(x_1).reshape(-1, x.shape[1])
            x_2 = x[(num_split)*num_sample_set:,:].reshape(1, -1, x.shape[1])
            x_2 = self.comm(x_2).reshape(-1, x.shape[1])
            x = torch.cat([x_1, x_2], dim=0)
        if self.target == 'normal':
            x_n, conf = self.prediction_normal(x.reshape(x.shape[0]//num_sample_set, num_sample_set, -1)) 
            x_ = []
            return x_n, x_, x, conf  
        
  
    
class PredictionHead(nn.Module):
    def __init__(self, dim_input, dim_output, confidence=False):
        
        
        super(PredictionHead, self).__init__()
        modules_regression = []
        modules_regression.append(nn.Linear(dim_input, dim_input//2))
        modules_regression.append(nn.ReLU())
        self.out_layer = nn.Linear(dim_input//2, dim_output)
        if confidence:
            self.confi_layer = nn.Linear(dim_input//2, 1)

        self.regression = nn.Sequential(*modules_regression)

    def forward(self, x):
        h = self.regression(x)
        ret = self.out_layer(h)
        if hasattr(self, 'confi_layer'):
            confidence = self.confi_layer(h) 
        else:
            confidence = torch.zeros_like([ret.shape[0], 1])
        return ret, torch.sigmoid(confidence)