Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,354 Bytes
c295391 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import cv2
import torch
import numpy as np
import os
def color_from_xy(x, y, W, H, cmap_name="hsv"):
"""
Map (x, y) -> color in (R, G, B).
1) Normalize x,y to [0,1].
2) Combine them into a single scalar c in [0,1].
3) Use matplotlib's colormap to convert c -> (R,G,B).
You can customize step 2, e.g., c = (x + y)/2, or some function of (x, y).
"""
import matplotlib.cm
import matplotlib.colors
x_norm = x / max(W - 1, 1)
y_norm = y / max(H - 1, 1)
# Simple combination:
c = (x_norm + y_norm) / 2.0
cmap = matplotlib.cm.get_cmap(cmap_name)
# cmap(c) -> (r,g,b,a) in [0,1]
rgba = cmap(c)
r, g, b = rgba[0], rgba[1], rgba[2]
return (r, g, b) # in [0,1], RGB order
def get_track_colors_by_position(tracks_b, vis_mask_b=None, image_width=None, image_height=None, cmap_name="hsv"):
"""
Given all tracks in one sample (b), compute a (N,3) array of RGB color values
in [0,255]. The color is determined by the (x,y) position in the first
visible frame for each track.
Args:
tracks_b: Tensor of shape (S, N, 2). (x,y) for each track in each frame.
vis_mask_b: (S, N) boolean mask; if None, assume all are visible.
image_width, image_height: used for normalizing (x, y).
cmap_name: for matplotlib (e.g., 'hsv', 'rainbow', 'jet').
Returns:
track_colors: np.ndarray of shape (N, 3), each row is (R,G,B) in [0,255].
"""
S, N, _ = tracks_b.shape
track_colors = np.zeros((N, 3), dtype=np.uint8)
if vis_mask_b is None:
# treat all as visible
vis_mask_b = torch.ones(S, N, dtype=torch.bool, device=tracks_b.device)
for i in range(N):
# Find first visible frame for track i
visible_frames = torch.where(vis_mask_b[:, i])[0]
if len(visible_frames) == 0:
# track is never visible; just assign black or something
track_colors[i] = (0, 0, 0)
continue
first_s = int(visible_frames[0].item())
# use that frame's (x,y)
x, y = tracks_b[first_s, i].tolist()
# map (x,y) -> (R,G,B) in [0,1]
r, g, b = color_from_xy(x, y, W=image_width, H=image_height, cmap_name=cmap_name)
# scale to [0,255]
r, g, b = int(r * 255), int(g * 255), int(b * 255)
track_colors[i] = (r, g, b)
return track_colors
def visualize_tracks_on_images(
images,
tracks,
track_vis_mask=None,
out_dir="track_visuals_concat_by_xy",
image_format="CHW", # "CHW" or "HWC"
normalize_mode="[0,1]",
cmap_name="hsv", # e.g. "hsv", "rainbow", "jet"
frames_per_row=4, # New parameter for grid layout
save_grid=True, # Flag to control whether to save the grid image
):
"""
Visualizes frames in a grid layout with specified frames per row.
Each track's color is determined by its (x,y) position
in the first visible frame (or frame 0 if always visible).
Finally convert the BGR result to RGB before saving.
Also saves each individual frame as a separate PNG file.
Args:
images: torch.Tensor (S, 3, H, W) if CHW or (S, H, W, 3) if HWC.
tracks: torch.Tensor (S, N, 2), last dim = (x, y).
track_vis_mask: torch.Tensor (S, N) or None.
out_dir: folder to save visualizations.
image_format: "CHW" or "HWC".
normalize_mode: "[0,1]", "[-1,1]", or None for direct raw -> 0..255
cmap_name: a matplotlib colormap name for color_from_xy.
frames_per_row: number of frames to display in each row of the grid.
save_grid: whether to save all frames in one grid image.
Returns:
None (saves images in out_dir).
"""
if len(tracks.shape) == 4:
tracks = tracks.squeeze(0)
images = images.squeeze(0)
if track_vis_mask is not None:
track_vis_mask = track_vis_mask.squeeze(0)
import matplotlib
matplotlib.use("Agg") # for non-interactive (optional)
os.makedirs(out_dir, exist_ok=True)
S = images.shape[0]
_, N, _ = tracks.shape # (S, N, 2)
# Move to CPU
images = images.cpu().clone()
tracks = tracks.cpu().clone()
if track_vis_mask is not None:
track_vis_mask = track_vis_mask.cpu().clone()
# Infer H, W from images shape
if image_format == "CHW":
# e.g. images[s].shape = (3, H, W)
H, W = images.shape[2], images.shape[3]
else:
# e.g. images[s].shape = (H, W, 3)
H, W = images.shape[1], images.shape[2]
# Pre-compute the color for each track i based on first visible position
track_colors_rgb = get_track_colors_by_position(
tracks, # shape (S, N, 2)
vis_mask_b=track_vis_mask if track_vis_mask is not None else None,
image_width=W,
image_height=H,
cmap_name=cmap_name,
)
# We'll accumulate each frame's drawn image in a list
frame_images = []
for s in range(S):
# shape => either (3, H, W) or (H, W, 3)
img = images[s]
# Convert to (H, W, 3)
if image_format == "CHW":
img = img.permute(1, 2, 0) # (H, W, 3)
# else "HWC", do nothing
img = img.numpy().astype(np.float32)
# Scale to [0,255] if needed
if normalize_mode == "[0,1]":
img = np.clip(img, 0, 1) * 255.0
elif normalize_mode == "[-1,1]":
img = (img + 1.0) * 0.5 * 255.0
img = np.clip(img, 0, 255.0)
# else no normalization
# Convert to uint8
img = img.astype(np.uint8)
# For drawing in OpenCV, convert to BGR
img_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
# Draw each visible track
cur_tracks = tracks[s] # shape (N, 2)
if track_vis_mask is not None:
valid_indices = torch.where(track_vis_mask[s])[0]
else:
valid_indices = range(N)
cur_tracks_np = cur_tracks.numpy()
for i in valid_indices:
x, y = cur_tracks_np[i]
pt = (int(round(x)), int(round(y)))
# track_colors_rgb[i] is (R,G,B). For OpenCV circle, we need BGR
R, G, B = track_colors_rgb[i]
color_bgr = (int(B), int(G), int(R))
cv2.circle(img_bgr, pt, radius=3, color=color_bgr, thickness=-1)
# Convert back to RGB for consistent final saving:
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
# Save individual frame
frame_path = os.path.join(out_dir, f"frame_{s:04d}.png")
# Convert to BGR for OpenCV imwrite
frame_bgr = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2BGR)
cv2.imwrite(frame_path, frame_bgr)
frame_images.append(img_rgb)
# Only create and save the grid image if save_grid is True
if save_grid:
# Calculate grid dimensions
num_rows = (S + frames_per_row - 1) // frames_per_row # Ceiling division
# Create a grid of images
grid_img = None
for row in range(num_rows):
start_idx = row * frames_per_row
end_idx = min(start_idx + frames_per_row, S)
# Concatenate this row horizontally
row_img = np.concatenate(frame_images[start_idx:end_idx], axis=1)
# If this row has fewer than frames_per_row images, pad with black
if end_idx - start_idx < frames_per_row:
padding_width = (frames_per_row - (end_idx - start_idx)) * W
padding = np.zeros((H, padding_width, 3), dtype=np.uint8)
row_img = np.concatenate([row_img, padding], axis=1)
# Add this row to the grid
if grid_img is None:
grid_img = row_img
else:
grid_img = np.concatenate([grid_img, row_img], axis=0)
out_path = os.path.join(out_dir, "tracks_grid.png")
# Convert back to BGR for OpenCV imwrite
grid_img_bgr = cv2.cvtColor(grid_img, cv2.COLOR_RGB2BGR)
cv2.imwrite(out_path, grid_img_bgr)
print(f"[INFO] Saved color-by-XY track visualization grid -> {out_path}")
print(f"[INFO] Saved {S} individual frames to {out_dir}/frame_*.png")
|